Optimizing Data Locality for Fork/Join
Programs Using Constrained Work
Stealing

Jonathan Lifflander*, Sriram KrishnamoorthyT, Laxmikant V. Kale*
{j1iff12, kale}@illinois.edu, sriram@pnnl.gov

*University of lllinois Urbana-Champaign
TPacific Northwest National Laboratory

November 20, 2014

Motivation

= Structured/task-based parallel programming (e.qg.
async-finish or spawn-sync) idioms have
proliferated

Optimizing Data Locality for Fork/Join Programs Using Constrained Work Stealing ¢ Jonathan Lifflander * 2/30

Motivation

= Structured/task-based parallel programming (e.qg.
async-finish or spawn-sync) idioms have
proliferated
» Examples: OpenMP 3.0, Java Concurrency Utilities, Intel
TBB, Cilk (gcc, icc), X10, Habanero Java

Optimizing Data Locality for Fork/Join Programs Using Constrained Work Stealing ¢ Jonathan Lifflander * 2/30

Motivation

= Structured/task-based parallel programming (e.qg.
async-finish or spawn-sync) idioms have
proliferated

» Examples: OpenMP 3.0, Java Concurrency Utilities, Intel
TBB, Cilk (gcc, icc), X10, Habanero Java

= Work stealing is often used to schedule them

Optimizing Data Locality for Fork/Join Programs Using Constrained Work Stealing ¢ Jonathan Lifflander * 2/30

Motivation

= Structured/task-based parallel programming (e.qg.
async-finish or spawn-sync) idioms have
proliferated

» Examples: OpenMP 3.0, Java Concurrency Utilities, Intel
TBB, Cilk (gcc, icc), X10, Habanero Java

= Work stealing is often used to schedule them
» Well-studied dynamic load balancing strategy

Optimizing Data Locality for Fork/Join Programs Using Constrained Work Stealing ¢ Jonathan Lifflander * 2/30

Motivation

= Structured/task-based parallel programming (e.qg.
async-finish or spawn-sync) idioms have
proliferated

» Examples: OpenMP 3.0, Java Concurrency Utilities, Intel
TBB, Cilk (gcc, icc), X10, Habanero Java

= Work stealing is often used to schedule them

» Well-studied dynamic load balancing strategy
» Provably efficient scheduling

Optimizing Data Locality for Fork/Join Programs Using Constrained Work Stealing ¢ Jonathan Lifflander * 2/30

Motivation

= Structured/task-based parallel programming (e.qg.
async-finish or spawn-sync) idioms have
proliferated
» Examples: OpenMP 3.0, Java Concurrency Utilities, Intel
TBB, Cilk (gcc, icc), X10, Habanero Java

= Work stealing is often used to schedule them

» Well-studied dynamic load balancing strategy
» Provably efficient scheduling
» Understandable bounds on time and space

Optimizing Data Locality for Fork/Join Programs Using Constrained Work Stealing ¢ Jonathan Lifflander * 2/30

Exploring the Problem

— NUMA and Work Stealing

= Work stealing schedulers

Optimizing Data Locality for Fork/Join Programs Using Constrained Work Stealing * Jonathan Lifflander * 3/30

Exploring the Problem

— NUMA and Work Stealing

= Work stealing schedulers
» A worker becomes a thief when it is idle

Optimizing Data Locality for Fork/Join Programs Using Constrained Work Stealing * Jonathan Lifflander * 3/30

Exploring the Problem

— NUMA and Work Stealing

= Work stealing schedulers

» A worker becomes a thief when it is idle
» Randomly selects a victim

Optimizing Data Locality for Fork/Join Programs Using Constrained Work Stealing * Jonathan Lifflander * 3/30

Exploring the Problem

— NUMA and Work Stealing

= Work stealing schedulers
» A worker becomes a thief when it is idle
» Randomly selects a victim
» How might this degrade the performance in a NUMA
environment?

Optimizing Data Locality for Fork/Join Programs Using Constrained Work Stealing ¢ Jonathan Lifflander * 3/30

Exploring the Problem

— Related Work

= Related work

Optimizing Data Locality for Fork/Join Programs Using Constrained Work Stealing * Jonathan Lifflander ¢ 4/30

Exploring the Problem

— Related Work

= Related work

» X10: locality-aware scheduling through explicit invocation
of task execution at the location of data elements (Philippe,
et al.)

Optimizing Data Locality for Fork/Join Programs Using Constrained Work Stealing ¢ Jonathan Lifflander ¢ 4/30

Exploring the Problem

— Related Work

= Related work
» X10: locality-aware scheduling through explicit invocation
of task execution at the location of data elements (Philippe,
et al.)
» OpenMP: reuse schedules to improve memory affinity for
looping constructs (Nikolopoulos, et al.)

Optimizing Data Locality for Fork/Join Programs Using Constrained Work Stealing ¢ Jonathan Lifflander ¢ 4/30

Exploring the Problem

— Related Work

= Related work

» X10: locality-aware scheduling through explicit invocation
of task execution at the location of data elements (Philippe,
et al.)

» OpenMP: reuse schedules to improve memory affinity for
looping constructs (Nikolopoulos, et al.)

» OpenMP: explicit data placement and layout specification
(Huang, et al., Bircsak, et al., Broquedis, et al.)

Optimizing Data Locality for Fork/Join Programs Using Constrained Work Stealing ¢ Jonathan Lifflander * 4/30

Can we construct a work-stealing schedule
that maximizes data locality, while ensuring
load balance?

Optimizing Data Locality for Fork/Join Programs Using Constrained Work Stealing ¢ Jonathan Lifflander * 5/30

Can we construct a work-stealing schedule
that maximizes data locality, while ensuring
load balance?

(with and without explicit programmer
mapping?)

Optimizing Data Locality for Fork/Join Programs Using Constrained Work Stealing ¢ Jonathan Lifflander * 5/30

NUMA Policies

= First-touch

» The first time memory is touched, the NUMA domain that
the thread executes on determines the location of the page
allocated

Optimizing Data Locality for Fork/Join Programs Using Constrained Work Stealing * Jonathan Lifflander * 6/30

NUMA Policies

= First-touch
» The first time memory is touched, the NUMA domain that
the thread executes on determines the location of the page
allocated
= Interleaved
» Statically allocate pages in a round robin manner to the set
of sockets specified

numactl --interleave=0,1,2,3,4,5,6,7

Optimizing Data Locality for Fork/Join Programs Using Constrained Work Stealing ¢ Jonathan Lifflander ¢ 6/30

Motivating Example
— Memory Copy: Adding Parallelism

#pragma omp parallel for schedule(static)
for (i 0; 1 < size; 1i++)

Ali] B[i] = 0; // init
#pragma omp parallel for schedule(static)
for (i 0; 1 < size; 1i++)

B[i] A[i]; // memcpy

Optimizing Data Locality for Fork/Join Programs Using Constrained Work Stealing ¢+ Jonathan Lifflander * 7130

Motivating Example
— Memory Copy: Adding Parallelism

#pragma omp parallel for schedule(static)
for (i = 0; 1 < size; i++)

A[i] = B[i] = 0; // init
#pragma omp parallel for schedule(static)
for (i1 =0; 1 < size; i++)

B[i] = A[il; // memcpy

A|1(1[1|2|2(2|3|3|3|4|4|4|5|5|5|5

B|1|1|1(2|2|2|3|3[3[4(4|4|5|5|5]|5

memcpy
thread I | 1 |

Optimizing Data Locality for Fork/Join Programs Using Constrained Work Stealing * Jonathan Lifflander

¢

7/30

Motivating Example

— Memory Copy: Adding Parallelism

#pragma omp parallel for schedule(static)

for (i
Ali]

0; 1 < size; i++)
B[i] = 0; // init

#pragma omp parallel for schedule(static)

for (i
B[i]

0; 1 < size; i++)

A[i]l; // memcpy

T T T T
A ‘1‘1‘1‘2‘2‘2‘3‘3‘3]4‘4‘4]5‘5|5|5

B |1]

1‘1

2‘2‘2

3‘3‘3

4‘4‘4

5‘5‘5‘5

memcpy
thread

1

2

3

4

5

Loops are naturally matched, leading to good performance.

Optimizing Data Locality for Fork/Join Programs Using Constrained Work Stealing *

Jonathan Lifflander

¢

8/30

Motivating Example
— Memory Copy: Adding Parallelism

#pragma omp parallel for schedule(static)
for (i 0; 1 < size; i++)

Ali] B[i] = 0; // init
#pragma omp parallel for schedule(static)
for (i 0; i < size; i++)

B[i] = A[i]; // memcpy

A ‘1‘1‘1i2‘2‘2i3‘3‘3i4‘4‘4i5‘5|5|5

B ’1‘1‘1 2‘2‘2 3‘3‘3 4‘4‘4 s‘s‘sﬁ

memcpy
thread 1 \ 2 1 3 1 9 \ 3

Empirical Study
m Parallel memory copy of 8GB of data, using OpenMP schedule static
®m On an 80-core system with eight NUMA domains, first-touch policy
m Execution time: 169ms

Optimizing Data Locality for Fork/Join Programs Using Constrained Work Stealing ¢+ Jonathan Lifflander ¢ 8/30

Motivating Example
— Memory Copy: Adding Parallelism

cilk for (i = 0; i < size; i++)
A[i] = B[1] = 0; // init

cilk for (i = 0; i < size; i++)
B[i] = A[i]; // memcpy

Optimizing Data Locality for Fork/Join Programs Using Constrained Work Stealing * Jonathan Lifflander * 9/30

Motivating Example
— Memory Copy: Adding Parallelism

cilk for (i = 0; i < size; i++)
A[i] = B[1] = 0; // init

cilk for (i = 0; i < size; i++)
B[i] = A[i]; // memcpy

A|5([3[2[4]|5|3[2[2]|5|1([5[2]4]|2]|3]5

Bs3245322515242'3'5

memaby | 3191415151 11113131212131112151;
thread
| R [[N [[[[[[|

Optimizing Data Locality for Fork/Join Programs Using Constrained Work Stealing * Jonathan Lifflander

¢

9/30

Motivating Example
— Memory Copy: Adding Parallelism

cilk for (i = 0; 1 < size; i++)
A[i] = B[i] = 0; // init

cilk for (1 = 0; 1 < size; i++)
B[i] = A[i]; // memcpy

A |5l3|2[4]5!3!2!2!5!1!5!2]4!2L3l5

1 1

B [s5]3]2)4]5]3]2]2|5]|1]5]2]4|2]3]s

memepy 3191412051011 13131515131,15151;
fread L4

Random work stealing mismatches the initialization and subsequent use,
causing performance degradation.

Optimizing Data Locality for Fork/Join Programs Using Constrained Work Stealing ¢ Jonathan Lifflander ¢+ 10/30

Motivating Example
— Memory Copy: Adding Parallelism

cilk for (i = 0; 1 < size; i++)
A[i] = B[i] = 0; // init

cilk for (i = 0; i < size; i++)
B[i] = A[i]; // memcpy

A fsls!z“!sl3!2l2!5l1l5l2l4l2l3l5
B [5]3]2]4]5]3]2]2|5]1]5]2]a|2]3]5

memcpy 3‘1|4|2|5|1|1|3|3|2|2|3‘1‘2|5|2
thread
1 1 1 1 | | 1 1 1 1 1 1 | 1 |

Empirical Study
= Parallel memory copy of 8GB, using MIT Cilk or OpenMP 3.0 Tasks

m Execution time: 436ms (Cilk/OMP task) vs. 169ms (OpenMP)

Optimizing Data Locality for Fork/Join Programs Using Constrained Work Stealing * Jonathan Lifflander ¢+ 10/30

Our Approach: Constrained Work Stealing

Optimizing Data Locality for Fork/Join Programs Using Constrained Work Stealing * Jonathan Lifflander ¢+ 11/30

Our Approach: Constrained Work Stealing

(1) Capture the schedule for a phase.

Optimizing Data Locality for Fork/Join Programs Using Constrained Work Stealing * Jonathan Lifflander ¢+ 11/30

Our Approach: Constrained Work Stealing

(1) Capture the schedule for a phase.

(2) If iterative, evolve that schedule for phases
with similar structure until convergence.

Optimizing Data Locality for Fork/Join Programs Using Constrained Work Stealing * Jonathan Lifflander * 11/30

Our Approach: Constrained Work Stealing

(1) Capture the schedule for a phase.

(2) If iterative, evolve that schedule for phases
with similar structure until convergence.

(3) Re-use converged schedule.

Optimizing Data Locality for Fork/Join Programs Using Constrained Work Stealing * Jonathan Lifflander * 11/30

Our Approach: Constrained Work Stealing

(1) Capture the schedule for a phase.

(2) If iterative, evolve that schedule for phases
with similar structure until convergence.

(3) Re-use converged schedule.

OR

Build a user-specified schedule and constrain.

Optimizing Data Locality for Fork/Join Programs Using Constrained Work Stealing ¢ Jonathan Lifflander * 11/30

(1) Capturing a Work-Stealing Schedule

Optimizing Data Locality for Fork/Join Programs Using Constrained Work Stealing ¢ Jonathan Lifflander ¢+ 12/30

(1) Capturing a Work-Stealing Schedule

PLDI'13: Steal Tree: Low-Overhead Tracing of Work Stealing
Schedulers, Lifflander, Krishnamoorthy, Kale.

Optimizing Data Locality for Fork/Join Programs Using Constrained Work Stealing ¢ Jonathan Lifflander ¢+ 12/30

(1) Capturing a Work-Stealing Schedule

PLDI'13: Steal Tree: Low-Overhead Tracing of Work Stealing
Schedulers, Lifflander, Krishnamoorthy, Kale.

= Using the theory in this paper, we can capture the work-stealing
schedule

Optimizing Data Locality for Fork/Join Programs Using Constrained Work Stealing ¢ Jonathan Lifflander * 12/30

(1) Capturing a Work-Stealing Schedule

PLDI'13: Steal Tree: Low-Overhead Tracing of Work Stealing
Schedulers, Lifflander, Krishnamoorthy, Kale.

= Using the theory in this paper, we can capture the work-stealing
schedule

= Very low time and storage overhead

Optimizing Data Locality for Fork/Join Programs Using Constrained Work Stealing ¢ Jonathan Lifflander * 12/30

(1) Capturing a Work-Stealing Schedule

PLDI'13: Steal Tree: Low-Overhead Tracing of Work Stealing
Schedulers, Lifflander, Krishnamoorthy, Kale.

= Using the theory in this paper, we can capture the work-stealing
schedule
= Very low time and storage overhead

= Amount of information stored in practice is much smaller than
O(number of tasks)

Optimizing Data Locality for Fork/Join Programs Using Constrained Work Stealing ¢ Jonathan Lifflander * 12/30

(2) Evolving the Schedule

= Observations

Optimizing Data Locality for Fork/Join Programs Using Constrained Work Stealing ¢ Jonathan Lifflander ¢+ 13/30

(2) Evolving the Schedule

= Observations
» The initialization phase and use phases may not match

Optimizing Data Locality for Fork/Join Programs Using Constrained Work Stealing ¢ Jonathan Lifflander ¢+ 13/30

(2) Evolving the Schedule

= Observations

» The initialization phase and use phases may not match
» The use phases may traverse the data differently

Optimizing Data Locality for Fork/Join Programs Using Constrained Work Stealing ¢ Jonathan Lifflander ¢+ 13/30

(2) Evolving the Schedule

= Observations

» The initialization phase and use phases may not match
» The use phases may traverse the data differently
» Hence, directly re-using a schedule may not be effective

Optimizing Data Locality for Fork/Join Programs Using Constrained Work Stealing ¢ Jonathan Lifflander * 13/30

(2) Evolving the Schedule

= Observations

» The initialization phase and use phases may not match
» The use phases may traverse the data differently
» Hence, directly re-using a schedule may not be effective

= Constrained work-stealing schedulers

Optimizing Data Locality for Fork/Join Programs Using Constrained Work Stealing ¢ Jonathan Lifflander * 13/30

(2) Evolving the Schedule

= Observations

» The initialization phase and use phases may not match
» The use phases may traverse the data differently
» Hence, directly re-using a schedule may not be effective

= Constrained work-stealing schedulers
» Input is a template schedule

Optimizing Data Locality for Fork/Join Programs Using Constrained Work Stealing ¢ Jonathan Lifflander * 13/30

(2) Evolving the Schedule

= Observations

» The initialization phase and use phases may not match
» The use phases may traverse the data differently
» Hence, directly re-using a schedule may not be effective

= Constrained work-stealing schedulers

» Input is a template schedule
» Modify the template schedule when there is load imbalance

Optimizing Data Locality for Fork/Join Programs Using Constrained Work Stealing ¢ Jonathan Lifflander ¢ 13/30

(2) Evolving the Schedule

= Observations

» The initialization phase and use phases may not match
» The use phases may traverse the data differently
» Hence, directly re-using a schedule may not be effective

= Constrained work-stealing schedulers

» Input is a template schedule
» Modify the template schedule when there is load imbalance
» Re-localize the data based on modified schedule

Optimizing Data Locality for Fork/Join Programs Using Constrained Work Stealing ¢ Jonathan Lifflander ¢ 13/30

(2) Evolving the Schedule

= Observations
» The initialization phase and use phases may not match
» The use phases may traverse the data differently
» Hence, directly re-using a schedule may not be effective

= Constrained work-stealing schedulers
» Input is a template schedule
» Modify the template schedule when there is load imbalance
» Re-localize the data based on modified schedule
» Repeat this process until convergence

Optimizing Data Locality for Fork/Join Programs Using Constrained Work Stealing ¢ Jonathan Lifflander ¢ 13/30

(2) Evolving the Schedule

— Constrained Work-Stealing Schedulers

= We have developed three schedulers:

Optimizing Data Locality for Fork/Join Programs Using Constrained Work Stealing * Jonathan Lifflander * 14/30

(2) Evolving the Schedule

— Constrained Work-Stealing Schedulers

= We have developed three schedulers:
» Strict, ordered work stealing (STOWS)
* Exactly reproduce the template schedule

Optimizing Data Locality for Fork/Join Programs Using Constrained Work Stealing * Jonathan Lifflander * 14/30

(2) Evolving the Schedule

— Constrained Work-Stealing Schedulers

= We have developed three schedulers:
» Strict, ordered work stealing (STOWS)

* Exactly reproduce the template schedule
» Strict, unordered work stealing (STUWS)

* Reproduce the template schedule, but allow the order to
deviate (respecting the application’s dependencies)

Optimizing Data Locality for Fork/Join Programs Using Constrained Work Stealing * Jonathan Lifflander * 14/30

(2) Evolving the Schedule

— Constrained Work-Stealing Schedulers

= We have developed three schedulers:
» Strict, ordered work stealing (STOWS)
* Exactly reproduce the template schedule
» Strict, unordered work stealing (STUWS)
* Reproduce the template schedule, but allow the order to
deviate (respecting the application’s dependencies)
» Relaxed work stealing (RELWS)
* Reproduce the template schedule as much as possible, but
allow workers to deviate when they are idle, by further
stealing work

Optimizing Data Locality for Fork/Join Programs Using Constrained Work Stealing * Jonathan Lifflander ¢ 14/30

Experimental Setup

= |ntel 80-core machine

Eight 2.27 GHz E7-8860 processors, each with 10 cores
» Connected via Intel QP1 6.4 GT/s

» 2 TB of DRAM

» Compiled with GNU GCC version 4.3.4

v

Optimizing Data Locality for Fork/Join Programs Using Constrained Work Stealing * Jonathan Lifflander * 15/30

Experimental Setup

= |ntel 80-core machine
Eight 2.27 GHz E7-8860 processors, each with 10 cores
Connected via Intel QP1 6.4 GT/s
2 TB of DRAM
Compiled with GNU GCC version 4.3.4
MIT Cilk 5.4.6 translator or GCC and OpenMP 3.0 (version 200805)
* We tried using OpenMP with ICC (Intel OpenMP implementation), but the
we found no significant scaling difference

Machine runs Red Hat Linux version 4.4.7-3

v

v

v

vy

v

Optimizing Data Locality for Fork/Join Programs Using Constrained Work Stealing * Jonathan Lifflander * 15/30

Experimental Setup

= |ntel 80-core machine

>

>
>
| 3
>

Eight 2.27 GHz E7-8860 processors, each with 10 cores
Connected via Intel QP1 6.4 GT/s
2 TB of DRAM
Compiled with GNU GCC version 4.3.4
MIT Cilk 5.4.6 translator or GCC and OpenMP 3.0 (version 200805)
* We tried using OpenMP with ICC (Intel OpenMP implementation), but the
we found no significant scaling difference

» Machine runs Red Hat Linux version 4.4.7-3
» Configured to use 4 KB pages

Optimizing Data Locality for Fork/Join Programs Using Constrained Work Stealing * Jonathan Lifflander * 15/30

Experimental Setup

= |ntel 80-core machine

>

>
>
| 3
>

Eight 2.27 GHz E7-8860 processors, each with 10 cores
Connected via Intel QP1 6.4 GT/s
2 TB of DRAM
Compiled with GNU GCC version 4.3.4
MIT Cilk 5.4.6 translator or GCC and OpenMP 3.0 (version 200805)
* We tried using OpenMP with ICC (Intel OpenMP implementation), but the
we found no significant scaling difference

» Machine runs Red Hat Linux version 4.4.7-3
» Configured to use 4 KB pages

All of our codes set the affinity of threads
* First 10 threads always go to a single socket

Optimizing Data Locality for Fork/Join Programs Using Constrained Work Stealing * Jonathan Lifflander * 15/30

(2) Evolving the Schedule

— RELWS: How well does it work?

5L flb(48) default p 10 Threads Eoom=
fib(48) default p Threads EZEEEa
— fib(48) RelWS(p-10) on p EZZZZZ2
E '
E
SENS]
g
2 r 1
]
%
i h
=
=
0 [

p =20

T
I
B
o
T
\
=)
S

Optimizing Data Locality for Fork/Join Programs Using Constrained Work Stealing ¢ Jonathan Lifflander

¢

16/30

(2) Evolving the Schedule

— RELWS: How well does it work?

>
fib(48) ===z
fib(48) StOWS, slow worker 3
4t fib(48) RelWS, slow worker 22222 4
K
=3 r 1
=
g
=2 F]
g
<
=
1}]]
o
0

Optimizing Data Locality for Fork/Join Programs Using Constrained Work Stealing ¢ Jonathan Lifflander ¢+ 17/30

Benchmarks

Benchmark Problem Configuration Tasks
heat nx=ny=32768 block = 64x8192 2k
floyd-warshall n = 32768 block = 64x4096 4k
fdtd ey =ex =hz =32768 block = 64x8192 2k
NAScg NA=22! NNZ=15 rows = 1024 2k
NAS mg N{X)Y,Z}=1024,LM=11 block=16x16x4MB 64—4k
parallel prefix N =256 MB block = 512 512
Optimizing Data Locality for Fork/Join Programs Using Constrained Work Stealing ¢ Jonathan Lifflander * 18/30

(3) Re-using the Schedule

— Overhead of Constrained Work Stealing (on 80 Cores)

1.3
1.2
1.1

1
0.9
0.8
0.7

T T T T T T
F Trace B StOWS L N StUWS |] RelWS KXY E
=N = 5 - . g@ RSk
] N §< E
heat floyd-warshall fdtd cg mg parallel prefix

Mean normalized ratio (y-axis) compared to default Cilk implementation. Error

bars are relative standard deviation with a sample size of 5.

Optimizing Data Locality for Fork/Join Programs Using Constrained Work Stealing ¢ Jonathan Lifflander * 19/30

Building a User-specified Schedule

= The user builds a mapping using an AP| we provide

Optimizing Data Locality for Fork/Join Programs Using Constrained Work Stealing ¢ Jonathan Lifflander * 20/30

Building a User-specified Schedule

= The user builds a mapping using an API we provide
» APIl: designateAfterNextSpawn(int worker)

Optimizing Data Locality for Fork/Join Programs Using Constrained Work Stealing ¢ Jonathan Lifflander * 20/30

Building a User-specified Schedule

= The user builds a mapping using an AP| we provide

» APIl: designateAfterNextSpawn(int worker)
» STUWS is used to schedule that mapping

Optimizing Data Locality for Fork/Join Programs Using Constrained Work Stealing ¢ Jonathan Lifflander * 20/30

Building a User-specified Schedule

= The user builds a mapping using an AP| we provide
» APIl: designateAfterNextSpawn(int worker)
» STUWS is used to schedule that mapping
» The runtime builds a Steal Tree that is used as a template
schedule

Optimizing Data Locality for Fork/Join Programs Using Constrained Work Stealing * Jonathan Lifflander * 20/30

Whole Program Locality Optimization

= We have grouped the applications into several
different categories

Optimizing Data Locality for Fork/Join Programs Using Constrained Work Stealing * Jonathan Lifflander ¢+ 21/30

Whole Program Locality Optimization

= We have grouped the applications into several
different categories
» lterative, matching structure (heat, fdtd, floyd-warshall)

* Extract template schedule, apply RELWS for five iterations until
convergence, then use STOWS

Optimizing Data Locality for Fork/Join Programs Using Constrained Work Stealing * Jonathan Lifflander * 21/30

Whole Program Locality Optimization

= We have grouped the applications into several
different categories
» lterative, matching structure (heat, fdtd, floyd-warshall)

* Extract template schedule, apply RELWS for five iterations until
convergence, then use STOWS

» lterative, differing structure (NAS cg)

* Start with random work-stealing on kernel, refine with RELWS until
convergence, then use STOWS

Optimizing Data Locality for Fork/Join Programs Using Constrained Work Stealing * Jonathan Lifflander * 21/30

Whole Program Locality Optimization

= We have grouped the applications into several
different categories
» lterative, matching structure (heat, fdtd, floyd-warshall)

* Extract template schedule, apply RELWS for five iterations until
convergence, then use STOWS

» lterative, differing structure (NAS cg)

* Start with random work-stealing on kernel, refine with RELWS until
convergence, then use STOWS

» lterative, multiple structures (NAS mg)

* We evaluate two approaches: using the same schedule across all
kernels, and using a different schedule for each kernel

Optimizing Data Locality for Fork/Join Programs Using Constrained Work Stealing * Jonathan Lifflander ¢ 21/30

Whole Program Locality Optimization

= We have grouped the applications into several
different categories
» lterative, matching structure (heat, fdtd, floyd-warshall)

* Extract template schedule, apply RELWS for five iterations until
convergence, then use STOWS

» lterative, differing structure (NAS cg)

* Start with random work-stealing on kernel, refine with RELWS until
convergence, then use STOWS

» lterative, multiple structures (NAS mg)

* We evaluate two approaches: using the same schedule across all
kernels, and using a different schedule for each kernel

» Non-iterative, matching structure (parallel prefix)
* Re-use schedule from initialization for other phases with STUWS

Optimizing Data Locality for Fork/Join Programs Using Constrained Work Stealing ¢ Jonathan Lifflander ¢ 21/30

Whole Program Locality Optimization

— Data redistribution cost (for the first few iterations)

N .
fdtd —>&—
BT floyd-warshall —A— 1
heat —f——
R i .
e
RGN :
£
=
10 .
5 L 4
0

Number of threads

Optimizing Data Locality for Fork/Join Programs Using Constrained Work Stealing ¢ Jonathan Lifflander ¢+ 22/30

Whole Program Locality Optimization

— lterative, matching structure

Speedup

heat floyd-warshall
40— ‘ 40 ———— : -
35 F 135 } / |
30 {30 L |
25 125 o
20 kg 20 /fJ
15 15
10 | 10 F |
- -
B 15F =2&
&
<
0 0
14 10 20 40 80
Number of Threads Number of Threads

Cilk first-touch Cilk interleave OMP tasks (interleave) OMP static (first-touch) Constrained Iter. RelWS ~Constrained User-Specified
) /\ fay %
N\ — 1=/

Optimizing Data Locality for Fork/Join Programs Using Constrained Work Stealing * Jonathan Lifflander ¢+ 23/30

Whole Program Locality Optimization

— lterative, differing structure

NAS cg

Speedup
[N
ot

14 10 20 40 80
Number of threads
Cilk first-touch Cilk interleave OMP tasks (interleave) OMP static (first-touch) Constrained Iter. RelwS Constrained User-Specified

o —A— —& g

Optimizing Data Locality for Fork/Join Programs Using Constrained Work Stealing ¢ Jonathan Lifflander ¢+ 24/30

Whole Program Locality Optimization

— lterative, multiple structures

NAS mg
35— -

30

25 F

20

(&3
T

JL& . .
14 10 20 40 80

Number of threads

Cilk first-touch Cilk interleave OMP tasks (interleave) OMP static (first-touch) Constrained RelWS 1 Constrained RelWS 2 Constrained User-Specified

Jan\ /\ AN 1
N — 7 | -

Optimizing Data Locality for Fork/Join Programs Using Constrained Work Stealing ¢ Jonathan Lifflander ¢+ 25/30

Whole Program Locality Optimization

— Non-iterative, matching structure

parallel prefix

50 T T

oL@ . .
14 10 20 40 80
Number of threads

Cilk first-touch Cilk interleave OMP tasks (interleave) OMP static (first-touch) Constrained RelWS 1 Constrained StUWS ~ Constrained User-Specified

Fan\ /\ N 1
\ 7— = | -

Optimizing Data Locality for Fork/Join Programs Using Constrained Work Stealing ¢ Jonathan Lifflander ¢+ 26/30

Dynamic Coarsening

Optimizing Data Locality for Fork/Join Programs Using Constrained Work Stealing * Jonathan Lifflander ¢+ 27130

Dynamic Coarsening

= Finding the ideal grain size is difficult

Optimizing Data Locality for Fork/Join Programs Using Constrained Work Stealing * Jonathan Lifflander ¢+ 27130

Dynamic Coarsening

= Finding the ideal grain size is difficult
» Too large leads to load imbalance

Optimizing Data Locality for Fork/Join Programs Using Constrained Work Stealing * Jonathan Lifflander ¢+ 27130

Dynamic Coarsening

= Finding the ideal grain size is difficult

» Too large leads to load imbalance
» Too small increases runtime overheads

Optimizing Data Locality for Fork/Join Programs Using Constrained Work Stealing * Jonathan Lifflander ¢+ 27130

Dynamic Coarsening

= Finding the ideal grain size is difficult
» Too large leads to load imbalance
» Too small increases runtime overheads
» Key observation: all parts of the Steal Tree do not equally
contribute to locality and load balance

Optimizing Data Locality for Fork/Join Programs Using Constrained Work Stealing * Jonathan Lifflander * 27130

Dynamic Coarsening

= Finding the ideal grain size is difficult
» Too large leads to load imbalance
» Too small increases runtime overheads
» Key observation: all parts of the Steal Tree do not equally
contribute to locality and load balance

» Steals higher in the Steal Tree correspond to large portions
of work

Optimizing Data Locality for Fork/Join Programs Using Constrained Work Stealing * Jonathan Lifflander * 27130

Dynamic Coarsening

= Finding the ideal grain size is difficult

» Too large leads to load imbalance
Too small increases runtime overheads
Key observation: all parts of the Steal Tree do not equally
contribute to locality and load balance
Steals higher in the Steal Tree correspond to large portions
of work
We start with a fine-grained schedule and iteratively
coarsen by pruning the Steal Tree and using STUWS

v

v

v

v

Optimizing Data Locality for Fork/Join Programs Using Constrained Work Stealing * Jonathan Lifflander ¢ 27130

Dynamic Coarsening

= Finding the ideal grain size is difficult

>

>

>

Too large leads to load imbalance

Too small increases runtime overheads

Key observation: all parts of the Steal Tree do not equally
contribute to locality and load balance

Steals higher in the Steal Tree correspond to large portions
of work

We start with a fine-grained schedule and iteratively
coarsen by pruning the Steal Tree and using STUWS
Using this technique we are able to achieve nearly the
same performance as using the optimal chunk size, but
starting with a much smaller chunk size

Optimizing Data Locality for Fork/Join Programs Using Constrained Work Stealing * Jonathan Lifflander ¢ 27 /30

Dynamic Coarsening

= Finding the ideal grain size is difficult

>

>

>

>

Too large leads to load imbalance

Too small increases runtime overheads

Key observation: all parts of the Steal Tree do not equally
contribute to locality and load balance

Steals higher in the Steal Tree correspond to large portions
of work

We start with a fine-grained schedule and iteratively
coarsen by pruning the Steal Tree and using STUWS
Using this technique we are able to achieve nearly the
same performance as using the optimal chunk size, but
starting with a much smaller chunk size

Details are in the paper

Optimizing Data Locality for Fork/Join Programs Using Constrained Work Stealing * Jonathan Lifflander ¢ 27 /30

Conclusion

= We present a comprehensive approach to improving
NUMA locality for work stealing:

Optimizing Data Locality for Fork/Join Programs Using Constrained Work Stealing * Jonathan Lifflander * 28/30

Conclusion

= We present a comprehensive approach to improving
NUMA locality for work stealing:

» User-specified
» Automatic

Optimizing Data Locality for Fork/Join Programs Using Constrained Work Stealing * Jonathan Lifflander * 28/30

Conclusion

= We present a comprehensive approach to improving
NUMA locality for work stealing:
» User-specified
» Automatic
» Up to 2.5x performance improvement on 80 cores
compared to default Cilk!

Optimizing Data Locality for Fork/Join Programs Using Constrained Work Stealing * Jonathan Lifflander * 28/30

Conclusion

= We present a comprehensive approach to improving
NUMA locality for work stealing:
» User-specified
» Automatic
» Up to 2.5x performance improvement on 80 cores
compared to default Cilk!
= Future work

» Can we use static compiler analysis to better match phases
and understand access patterns?

Optimizing Data Locality for Fork/Join Programs Using Constrained Work Stealing * Jonathan Lifflander ¢ 28/30

Questions?

Optimizing Data Locality for Fork/Join Programs Using Constrained Work Stealing ¢ Jonathan Lifflander ¢+ 29/30

Evolving the Schedule

— Constrained Work-Stealing Schedulers

Default StOWS StUws RelWs
scheduler scheduler scheduler scheduler

o1 2 o0 1 2 0 1 2 0 1 2

time

Iwork idle I steal setup §$steal attempt

\ 4 |

donation

Optimizing Data Locality for Fork/Join Programs Using Constrained Work Stealing ¢ Jonathan Lifflander ¢+ 30/30

