
Optimizing Data Locality for Fork/Join
Programs Using Constrained Work

Stealing

Jonathan Lifflander*, Sriram Krishnamoorthy†, Laxmikant V. Kale*
{jliffl2, kale}@illinois.edu, sriram@pnnl.gov

*University of Illinois Urbana-Champaign
†Pacific Northwest National Laboratory

November 20, 2014

Motivation

� Structured/task-based parallel programming (e.g.
async-finish or spawn-sync) idioms have
proliferated

I Examples: OpenMP 3.0, Java Concurrency Utilities, Intel
TBB, Cilk (gcc, icc), X10, Habanero Java

� Work stealing is often used to schedule them
I Well-studied dynamic load balancing strategy
I Provably efficient scheduling
I Understandable bounds on time and space

Optimizing Data Locality for Fork/Join Programs Using Constrained Work Stealing � Jonathan Lifflander � 2 / 30 Optimizing Data Locality for Fork/Join Programs Using Constrained Work Stealing2 / 30

Motivation

� Structured/task-based parallel programming (e.g.
async-finish or spawn-sync) idioms have
proliferated
I Examples: OpenMP 3.0, Java Concurrency Utilities, Intel

TBB, Cilk (gcc, icc), X10, Habanero Java

� Work stealing is often used to schedule them
I Well-studied dynamic load balancing strategy
I Provably efficient scheduling
I Understandable bounds on time and space

Optimizing Data Locality for Fork/Join Programs Using Constrained Work Stealing � Jonathan Lifflander � 2 / 30 Optimizing Data Locality for Fork/Join Programs Using Constrained Work Stealing2 / 30

Motivation

� Structured/task-based parallel programming (e.g.
async-finish or spawn-sync) idioms have
proliferated
I Examples: OpenMP 3.0, Java Concurrency Utilities, Intel

TBB, Cilk (gcc, icc), X10, Habanero Java

� Work stealing is often used to schedule them

I Well-studied dynamic load balancing strategy
I Provably efficient scheduling
I Understandable bounds on time and space

Optimizing Data Locality for Fork/Join Programs Using Constrained Work Stealing � Jonathan Lifflander � 2 / 30 Optimizing Data Locality for Fork/Join Programs Using Constrained Work Stealing2 / 30

Motivation

� Structured/task-based parallel programming (e.g.
async-finish or spawn-sync) idioms have
proliferated
I Examples: OpenMP 3.0, Java Concurrency Utilities, Intel

TBB, Cilk (gcc, icc), X10, Habanero Java

� Work stealing is often used to schedule them
I Well-studied dynamic load balancing strategy

I Provably efficient scheduling
I Understandable bounds on time and space

Optimizing Data Locality for Fork/Join Programs Using Constrained Work Stealing � Jonathan Lifflander � 2 / 30 Optimizing Data Locality for Fork/Join Programs Using Constrained Work Stealing2 / 30

Motivation

� Structured/task-based parallel programming (e.g.
async-finish or spawn-sync) idioms have
proliferated
I Examples: OpenMP 3.0, Java Concurrency Utilities, Intel

TBB, Cilk (gcc, icc), X10, Habanero Java

� Work stealing is often used to schedule them
I Well-studied dynamic load balancing strategy
I Provably efficient scheduling

I Understandable bounds on time and space

Optimizing Data Locality for Fork/Join Programs Using Constrained Work Stealing � Jonathan Lifflander � 2 / 30 Optimizing Data Locality for Fork/Join Programs Using Constrained Work Stealing2 / 30

Motivation

� Structured/task-based parallel programming (e.g.
async-finish or spawn-sync) idioms have
proliferated
I Examples: OpenMP 3.0, Java Concurrency Utilities, Intel

TBB, Cilk (gcc, icc), X10, Habanero Java

� Work stealing is often used to schedule them
I Well-studied dynamic load balancing strategy
I Provably efficient scheduling
I Understandable bounds on time and space

Optimizing Data Locality for Fork/Join Programs Using Constrained Work Stealing � Jonathan Lifflander � 2 / 30 Optimizing Data Locality for Fork/Join Programs Using Constrained Work Stealing2 / 30

Exploring the Problem
→ NUMA and Work Stealing

� Work stealing schedulers

I A worker becomes a thief when it is idle
I Randomly selects a victim
I How might this degrade the performance in a NUMA

environment?

Optimizing Data Locality for Fork/Join Programs Using Constrained Work Stealing � Jonathan Lifflander � 3 / 30 Optimizing Data Locality for Fork/Join Programs Using Constrained Work Stealing3 / 30

Exploring the Problem
→ NUMA and Work Stealing

� Work stealing schedulers
I A worker becomes a thief when it is idle

I Randomly selects a victim
I How might this degrade the performance in a NUMA

environment?

Optimizing Data Locality for Fork/Join Programs Using Constrained Work Stealing � Jonathan Lifflander � 3 / 30 Optimizing Data Locality for Fork/Join Programs Using Constrained Work Stealing3 / 30

Exploring the Problem
→ NUMA and Work Stealing

� Work stealing schedulers
I A worker becomes a thief when it is idle
I Randomly selects a victim

I How might this degrade the performance in a NUMA
environment?

Optimizing Data Locality for Fork/Join Programs Using Constrained Work Stealing � Jonathan Lifflander � 3 / 30 Optimizing Data Locality for Fork/Join Programs Using Constrained Work Stealing3 / 30

Exploring the Problem
→ NUMA and Work Stealing

� Work stealing schedulers
I A worker becomes a thief when it is idle
I Randomly selects a victim
I How might this degrade the performance in a NUMA

environment?

Optimizing Data Locality for Fork/Join Programs Using Constrained Work Stealing � Jonathan Lifflander � 3 / 30 Optimizing Data Locality for Fork/Join Programs Using Constrained Work Stealing3 / 30

Exploring the Problem
→ Related Work

� Related work

I X10: locality-aware scheduling through explicit invocation
of task execution at the location of data elements (Philippe,
et al.)

I OpenMP: reuse schedules to improve memory affinity for
looping constructs (Nikolopoulos, et al.)

I OpenMP: explicit data placement and layout specification
(Huang, et al., Bircsak, et al., Broquedis, et al.)

Optimizing Data Locality for Fork/Join Programs Using Constrained Work Stealing � Jonathan Lifflander � 4 / 30 Optimizing Data Locality for Fork/Join Programs Using Constrained Work Stealing4 / 30

Exploring the Problem
→ Related Work

� Related work
I X10: locality-aware scheduling through explicit invocation

of task execution at the location of data elements (Philippe,
et al.)

I OpenMP: reuse schedules to improve memory affinity for
looping constructs (Nikolopoulos, et al.)

I OpenMP: explicit data placement and layout specification
(Huang, et al., Bircsak, et al., Broquedis, et al.)

Optimizing Data Locality for Fork/Join Programs Using Constrained Work Stealing � Jonathan Lifflander � 4 / 30 Optimizing Data Locality for Fork/Join Programs Using Constrained Work Stealing4 / 30

Exploring the Problem
→ Related Work

� Related work
I X10: locality-aware scheduling through explicit invocation

of task execution at the location of data elements (Philippe,
et al.)

I OpenMP: reuse schedules to improve memory affinity for
looping constructs (Nikolopoulos, et al.)

I OpenMP: explicit data placement and layout specification
(Huang, et al., Bircsak, et al., Broquedis, et al.)

Optimizing Data Locality for Fork/Join Programs Using Constrained Work Stealing � Jonathan Lifflander � 4 / 30 Optimizing Data Locality for Fork/Join Programs Using Constrained Work Stealing4 / 30

Exploring the Problem
→ Related Work

� Related work
I X10: locality-aware scheduling through explicit invocation

of task execution at the location of data elements (Philippe,
et al.)

I OpenMP: reuse schedules to improve memory affinity for
looping constructs (Nikolopoulos, et al.)

I OpenMP: explicit data placement and layout specification
(Huang, et al., Bircsak, et al., Broquedis, et al.)

Optimizing Data Locality for Fork/Join Programs Using Constrained Work Stealing � Jonathan Lifflander � 4 / 30 Optimizing Data Locality for Fork/Join Programs Using Constrained Work Stealing4 / 30

Can we construct a work-stealing schedule
that maximizes data locality, while ensuring

load balance?

(with and without explicit programmer
mapping?)

Optimizing Data Locality for Fork/Join Programs Using Constrained Work Stealing � Jonathan Lifflander � 5 / 30 Optimizing Data Locality for Fork/Join Programs Using Constrained Work Stealing5 / 30

Can we construct a work-stealing schedule
that maximizes data locality, while ensuring

load balance?

(with and without explicit programmer
mapping?)

Optimizing Data Locality for Fork/Join Programs Using Constrained Work Stealing � Jonathan Lifflander � 5 / 30 Optimizing Data Locality for Fork/Join Programs Using Constrained Work Stealing5 / 30

NUMA Policies

� First-touch
I The first time memory is touched, the NUMA domain that

the thread executes on determines the location of the page
allocated

� Interleaved
I Statically allocate pages in a round robin manner to the set

of sockets specified

numactl --interleave=0,1,2,3,4,5,6,7

Optimizing Data Locality for Fork/Join Programs Using Constrained Work Stealing � Jonathan Lifflander � 6 / 30 Optimizing Data Locality for Fork/Join Programs Using Constrained Work Stealing6 / 30

NUMA Policies

� First-touch
I The first time memory is touched, the NUMA domain that

the thread executes on determines the location of the page
allocated

� Interleaved
I Statically allocate pages in a round robin manner to the set

of sockets specified

numactl --interleave=0,1,2,3,4,5,6,7

Optimizing Data Locality for Fork/Join Programs Using Constrained Work Stealing � Jonathan Lifflander � 6 / 30 Optimizing Data Locality for Fork/Join Programs Using Constrained Work Stealing6 / 30

Motivating Example
→ Memory Copy: Adding Parallelism

#pragma omp parallel for schedule(static)
for (i = 0; i < size; i++)
 B[i] = A[i]; // memcpy

#pragma omp parallel for schedule(static)
for (i = 0; i < size; i++)
 A[i] = B[i] = 0; // init

A

B

1 1 1

1 1 1

2 2 2

2 2 2

3 3 3

3 3 3

4 4 4

4 4 4

5 5 5

5 5 5

5

5

1 2 3 4 5
memcpy
thread

Optimizing Data Locality for Fork/Join Programs Using Constrained Work Stealing � Jonathan Lifflander � 7 / 30 Optimizing Data Locality for Fork/Join Programs Using Constrained Work Stealing7 / 30

Motivating Example
→ Memory Copy: Adding Parallelism

#pragma omp parallel for schedule(static)
for (i = 0; i < size; i++)
 B[i] = A[i]; // memcpy

#pragma omp parallel for schedule(static)
for (i = 0; i < size; i++)
 A[i] = B[i] = 0; // init

A

B

1 1 1

1 1 1

2 2 2

2 2 2

3 3 3

3 3 3

4 4 4

4 4 4

5 5 5

5 5 5

5

5

1 2 3 4 5
memcpy
thread

Optimizing Data Locality for Fork/Join Programs Using Constrained Work Stealing � Jonathan Lifflander � 7 / 30 Optimizing Data Locality for Fork/Join Programs Using Constrained Work Stealing7 / 30

Motivating Example
→ Memory Copy: Adding Parallelism

#pragma omp parallel for schedule(static)
for (i = 0; i < size; i++)
 B[i] = A[i]; // memcpy

#pragma omp parallel for schedule(static)
for (i = 0; i < size; i++)
 A[i] = B[i] = 0; // init

A

B

1 1 1

1 1 1

2 2 2

2 2 2

3 3 3

3 3 3

4 4 4

4 4 4

5 5 5

5 5 5

5

5

1 2 3 4 5
memcpy
thread

Loops are naturally matched, leading to good performance.

Optimizing Data Locality for Fork/Join Programs Using Constrained Work Stealing � Jonathan Lifflander � 8 / 30 Optimizing Data Locality for Fork/Join Programs Using Constrained Work Stealing8 / 30

Motivating Example
→ Memory Copy: Adding Parallelism

#pragma omp parallel for schedule(static)
for (i = 0; i < size; i++)
 B[i] = A[i]; // memcpy

#pragma omp parallel for schedule(static)
for (i = 0; i < size; i++)
 A[i] = B[i] = 0; // init

A

B

1 1 1

1 1 1

2 2 2

2 2 2

3 3 3

3 3 3

4 4 4

4 4 4

5 5 5

5 5 5

5

5

1 2 3 4 5
memcpy
thread

Empirical Study
� Parallel memory copy of 8GB of data, using OpenMP schedule static
� On an 80-core system with eight NUMA domains, first-touch policy
� Execution time: 169ms

Optimizing Data Locality for Fork/Join Programs Using Constrained Work Stealing � Jonathan Lifflander � 8 / 30 Optimizing Data Locality for Fork/Join Programs Using Constrained Work Stealing8 / 30

Motivating Example
→ Memory Copy: Adding Parallelism

cilk_for (i = 0; i < size; i++)
 B[i] = A[i]; // memcpy

cilk_for (i = 0; i < size; i++)
 A[i] = B[i] = 0; // init

A

B
memcpy
thread

5 3 2 4 5 3 2 2 5 1 5 2 4 2 3 5

5 3 2 4 5 3 2 2 5 1 5 2 4 2 3 5

3 1 4 2 5 1 1 3 3 2 2 3 1 2 5 2

Optimizing Data Locality for Fork/Join Programs Using Constrained Work Stealing � Jonathan Lifflander � 9 / 30 Optimizing Data Locality for Fork/Join Programs Using Constrained Work Stealing9 / 30

Motivating Example
→ Memory Copy: Adding Parallelism

cilk_for (i = 0; i < size; i++)
 B[i] = A[i]; // memcpy

cilk_for (i = 0; i < size; i++)
 A[i] = B[i] = 0; // init

A

B
memcpy
thread

5 3 2 4 5 3 2 2 5 1 5 2 4 2 3 5

5 3 2 4 5 3 2 2 5 1 5 2 4 2 3 5

3 1 4 2 5 1 1 3 3 2 2 3 1 2 5 2

Optimizing Data Locality for Fork/Join Programs Using Constrained Work Stealing � Jonathan Lifflander � 9 / 30 Optimizing Data Locality for Fork/Join Programs Using Constrained Work Stealing9 / 30

Motivating Example
→ Memory Copy: Adding Parallelism

cilk_for (i = 0; i < size; i++)
 B[i] = A[i]; // memcpy

cilk_for (i = 0; i < size; i++)
 A[i] = B[i] = 0; // init

A

B
memcpy
thread

5 3 2 4 5 3 2 2 5 1 5 2 4 2 3 5

5 3 2 4 5 3 2 2 5 1 5 2 4 2 3 5

3 1 4 2 5 1 1 3 3 2 2 3 1 2 5 2

Random work stealing mismatches the initialization and subsequent use,
causing performance degradation.

Optimizing Data Locality for Fork/Join Programs Using Constrained Work Stealing � Jonathan Lifflander � 10 / 30 Optimizing Data Locality for Fork/Join Programs Using Constrained Work Stealing10 / 30

Motivating Example
→ Memory Copy: Adding Parallelism

cilk_for (i = 0; i < size; i++)
 B[i] = A[i]; // memcpy

cilk_for (i = 0; i < size; i++)
 A[i] = B[i] = 0; // init

A

B
memcpy
thread

5 3 2 4 5 3 2 2 5 1 5 2 4 2 3 5

5 3 2 4 5 3 2 2 5 1 5 2 4 2 3 5

3 1 4 2 5 1 1 3 3 2 2 3 1 2 5 2

Empirical Study
� Parallel memory copy of 8GB, using MIT Cilk or OpenMP 3.0 Tasks
� Execution time: 436ms (Cilk/OMP task) vs. 169ms (OpenMP)

Optimizing Data Locality for Fork/Join Programs Using Constrained Work Stealing � Jonathan Lifflander � 10 / 30 Optimizing Data Locality for Fork/Join Programs Using Constrained Work Stealing10 / 30

Our Approach: Constrained Work Stealing

(1) Capture the schedule for a phase.

(2) If iterative, evolve that schedule for phases
with similar structure until convergence.

(3) Re-use converged schedule.

OR

Build a user-specified schedule and constrain.

Optimizing Data Locality for Fork/Join Programs Using Constrained Work Stealing � Jonathan Lifflander � 11 / 30 Optimizing Data Locality for Fork/Join Programs Using Constrained Work Stealing11 / 30

Our Approach: Constrained Work Stealing

(1) Capture the schedule for a phase.

(2) If iterative, evolve that schedule for phases
with similar structure until convergence.

(3) Re-use converged schedule.

OR

Build a user-specified schedule and constrain.

Optimizing Data Locality for Fork/Join Programs Using Constrained Work Stealing � Jonathan Lifflander � 11 / 30 Optimizing Data Locality for Fork/Join Programs Using Constrained Work Stealing11 / 30

Our Approach: Constrained Work Stealing

(1) Capture the schedule for a phase.

(2) If iterative, evolve that schedule for phases
with similar structure until convergence.

(3) Re-use converged schedule.

OR

Build a user-specified schedule and constrain.

Optimizing Data Locality for Fork/Join Programs Using Constrained Work Stealing � Jonathan Lifflander � 11 / 30 Optimizing Data Locality for Fork/Join Programs Using Constrained Work Stealing11 / 30

Our Approach: Constrained Work Stealing

(1) Capture the schedule for a phase.

(2) If iterative, evolve that schedule for phases
with similar structure until convergence.

(3) Re-use converged schedule.

OR

Build a user-specified schedule and constrain.

Optimizing Data Locality for Fork/Join Programs Using Constrained Work Stealing � Jonathan Lifflander � 11 / 30 Optimizing Data Locality for Fork/Join Programs Using Constrained Work Stealing11 / 30

Our Approach: Constrained Work Stealing

(1) Capture the schedule for a phase.

(2) If iterative, evolve that schedule for phases
with similar structure until convergence.

(3) Re-use converged schedule.

OR

Build a user-specified schedule and constrain.

Optimizing Data Locality for Fork/Join Programs Using Constrained Work Stealing � Jonathan Lifflander � 11 / 30 Optimizing Data Locality for Fork/Join Programs Using Constrained Work Stealing11 / 30

(1) Capturing a Work-Stealing Schedule

PLDI’13: Steal Tree: Low-Overhead Tracing of Work Stealing
Schedulers, Lifflander, Krishnamoorthy, Kale.

� Using the theory in this paper, we can capture the work-stealing
schedule

� Very low time and storage overhead
� Amount of information stored in practice is much smaller than
O(number of tasks)

Optimizing Data Locality for Fork/Join Programs Using Constrained Work Stealing � Jonathan Lifflander � 12 / 30 Optimizing Data Locality for Fork/Join Programs Using Constrained Work Stealing12 / 30

(1) Capturing a Work-Stealing Schedule

PLDI’13: Steal Tree: Low-Overhead Tracing of Work Stealing
Schedulers, Lifflander, Krishnamoorthy, Kale.

� Using the theory in this paper, we can capture the work-stealing
schedule

� Very low time and storage overhead
� Amount of information stored in practice is much smaller than
O(number of tasks)

Optimizing Data Locality for Fork/Join Programs Using Constrained Work Stealing � Jonathan Lifflander � 12 / 30 Optimizing Data Locality for Fork/Join Programs Using Constrained Work Stealing12 / 30

(1) Capturing a Work-Stealing Schedule

PLDI’13: Steal Tree: Low-Overhead Tracing of Work Stealing
Schedulers, Lifflander, Krishnamoorthy, Kale.

� Using the theory in this paper, we can capture the work-stealing
schedule

� Very low time and storage overhead
� Amount of information stored in practice is much smaller than
O(number of tasks)

Optimizing Data Locality for Fork/Join Programs Using Constrained Work Stealing � Jonathan Lifflander � 12 / 30 Optimizing Data Locality for Fork/Join Programs Using Constrained Work Stealing12 / 30

(1) Capturing a Work-Stealing Schedule

PLDI’13: Steal Tree: Low-Overhead Tracing of Work Stealing
Schedulers, Lifflander, Krishnamoorthy, Kale.

� Using the theory in this paper, we can capture the work-stealing
schedule

� Very low time and storage overhead

� Amount of information stored in practice is much smaller than
O(number of tasks)

Optimizing Data Locality for Fork/Join Programs Using Constrained Work Stealing � Jonathan Lifflander � 12 / 30 Optimizing Data Locality for Fork/Join Programs Using Constrained Work Stealing12 / 30

(1) Capturing a Work-Stealing Schedule

PLDI’13: Steal Tree: Low-Overhead Tracing of Work Stealing
Schedulers, Lifflander, Krishnamoorthy, Kale.

� Using the theory in this paper, we can capture the work-stealing
schedule

� Very low time and storage overhead
� Amount of information stored in practice is much smaller than
O(number of tasks)

Optimizing Data Locality for Fork/Join Programs Using Constrained Work Stealing � Jonathan Lifflander � 12 / 30 Optimizing Data Locality for Fork/Join Programs Using Constrained Work Stealing12 / 30

(2) Evolving the Schedule

� Observations

I The initialization phase and use phases may not match
I The use phases may traverse the data differently
I Hence, directly re-using a schedule may not be effective

� Constrained work-stealing schedulers
I Input is a template schedule
I Modify the template schedule when there is load imbalance
I Re-localize the data based on modified schedule
I Repeat this process until convergence

Optimizing Data Locality for Fork/Join Programs Using Constrained Work Stealing � Jonathan Lifflander � 13 / 30 Optimizing Data Locality for Fork/Join Programs Using Constrained Work Stealing13 / 30

(2) Evolving the Schedule

� Observations
I The initialization phase and use phases may not match

I The use phases may traverse the data differently
I Hence, directly re-using a schedule may not be effective

� Constrained work-stealing schedulers
I Input is a template schedule
I Modify the template schedule when there is load imbalance
I Re-localize the data based on modified schedule
I Repeat this process until convergence

Optimizing Data Locality for Fork/Join Programs Using Constrained Work Stealing � Jonathan Lifflander � 13 / 30 Optimizing Data Locality for Fork/Join Programs Using Constrained Work Stealing13 / 30

(2) Evolving the Schedule

� Observations
I The initialization phase and use phases may not match
I The use phases may traverse the data differently

I Hence, directly re-using a schedule may not be effective

� Constrained work-stealing schedulers
I Input is a template schedule
I Modify the template schedule when there is load imbalance
I Re-localize the data based on modified schedule
I Repeat this process until convergence

Optimizing Data Locality for Fork/Join Programs Using Constrained Work Stealing � Jonathan Lifflander � 13 / 30 Optimizing Data Locality for Fork/Join Programs Using Constrained Work Stealing13 / 30

(2) Evolving the Schedule

� Observations
I The initialization phase and use phases may not match
I The use phases may traverse the data differently
I Hence, directly re-using a schedule may not be effective

� Constrained work-stealing schedulers
I Input is a template schedule
I Modify the template schedule when there is load imbalance
I Re-localize the data based on modified schedule
I Repeat this process until convergence

Optimizing Data Locality for Fork/Join Programs Using Constrained Work Stealing � Jonathan Lifflander � 13 / 30 Optimizing Data Locality for Fork/Join Programs Using Constrained Work Stealing13 / 30

(2) Evolving the Schedule

� Observations
I The initialization phase and use phases may not match
I The use phases may traverse the data differently
I Hence, directly re-using a schedule may not be effective

� Constrained work-stealing schedulers

I Input is a template schedule
I Modify the template schedule when there is load imbalance
I Re-localize the data based on modified schedule
I Repeat this process until convergence

Optimizing Data Locality for Fork/Join Programs Using Constrained Work Stealing � Jonathan Lifflander � 13 / 30 Optimizing Data Locality for Fork/Join Programs Using Constrained Work Stealing13 / 30

(2) Evolving the Schedule

� Observations
I The initialization phase and use phases may not match
I The use phases may traverse the data differently
I Hence, directly re-using a schedule may not be effective

� Constrained work-stealing schedulers
I Input is a template schedule

I Modify the template schedule when there is load imbalance
I Re-localize the data based on modified schedule
I Repeat this process until convergence

Optimizing Data Locality for Fork/Join Programs Using Constrained Work Stealing � Jonathan Lifflander � 13 / 30 Optimizing Data Locality for Fork/Join Programs Using Constrained Work Stealing13 / 30

(2) Evolving the Schedule

� Observations
I The initialization phase and use phases may not match
I The use phases may traverse the data differently
I Hence, directly re-using a schedule may not be effective

� Constrained work-stealing schedulers
I Input is a template schedule
I Modify the template schedule when there is load imbalance

I Re-localize the data based on modified schedule
I Repeat this process until convergence

Optimizing Data Locality for Fork/Join Programs Using Constrained Work Stealing � Jonathan Lifflander � 13 / 30 Optimizing Data Locality for Fork/Join Programs Using Constrained Work Stealing13 / 30

(2) Evolving the Schedule

� Observations
I The initialization phase and use phases may not match
I The use phases may traverse the data differently
I Hence, directly re-using a schedule may not be effective

� Constrained work-stealing schedulers
I Input is a template schedule
I Modify the template schedule when there is load imbalance
I Re-localize the data based on modified schedule

I Repeat this process until convergence

Optimizing Data Locality for Fork/Join Programs Using Constrained Work Stealing � Jonathan Lifflander � 13 / 30 Optimizing Data Locality for Fork/Join Programs Using Constrained Work Stealing13 / 30

(2) Evolving the Schedule

� Observations
I The initialization phase and use phases may not match
I The use phases may traverse the data differently
I Hence, directly re-using a schedule may not be effective

� Constrained work-stealing schedulers
I Input is a template schedule
I Modify the template schedule when there is load imbalance
I Re-localize the data based on modified schedule
I Repeat this process until convergence

Optimizing Data Locality for Fork/Join Programs Using Constrained Work Stealing � Jonathan Lifflander � 13 / 30 Optimizing Data Locality for Fork/Join Programs Using Constrained Work Stealing13 / 30

(2) Evolving the Schedule
→ Constrained Work-Stealing Schedulers

� We have developed three schedulers:

I Strict, ordered work stealing (STOWS)
F Exactly reproduce the template schedule

I Strict, unordered work stealing (STUWS)
F Reproduce the template schedule, but allow the order to

deviate (respecting the application’s dependencies)
I Relaxed work stealing (RELWS)

F Reproduce the template schedule as much as possible, but
allow workers to deviate when they are idle, by further
stealing work

Optimizing Data Locality for Fork/Join Programs Using Constrained Work Stealing � Jonathan Lifflander � 14 / 30 Optimizing Data Locality for Fork/Join Programs Using Constrained Work Stealing14 / 30

(2) Evolving the Schedule
→ Constrained Work-Stealing Schedulers

� We have developed three schedulers:
I Strict, ordered work stealing (STOWS)

F Exactly reproduce the template schedule

I Strict, unordered work stealing (STUWS)
F Reproduce the template schedule, but allow the order to

deviate (respecting the application’s dependencies)
I Relaxed work stealing (RELWS)

F Reproduce the template schedule as much as possible, but
allow workers to deviate when they are idle, by further
stealing work

Optimizing Data Locality for Fork/Join Programs Using Constrained Work Stealing � Jonathan Lifflander � 14 / 30 Optimizing Data Locality for Fork/Join Programs Using Constrained Work Stealing14 / 30

(2) Evolving the Schedule
→ Constrained Work-Stealing Schedulers

� We have developed three schedulers:
I Strict, ordered work stealing (STOWS)

F Exactly reproduce the template schedule
I Strict, unordered work stealing (STUWS)

F Reproduce the template schedule, but allow the order to
deviate (respecting the application’s dependencies)

I Relaxed work stealing (RELWS)
F Reproduce the template schedule as much as possible, but

allow workers to deviate when they are idle, by further
stealing work

Optimizing Data Locality for Fork/Join Programs Using Constrained Work Stealing � Jonathan Lifflander � 14 / 30 Optimizing Data Locality for Fork/Join Programs Using Constrained Work Stealing14 / 30

(2) Evolving the Schedule
→ Constrained Work-Stealing Schedulers

� We have developed three schedulers:
I Strict, ordered work stealing (STOWS)

F Exactly reproduce the template schedule
I Strict, unordered work stealing (STUWS)

F Reproduce the template schedule, but allow the order to
deviate (respecting the application’s dependencies)

I Relaxed work stealing (RELWS)
F Reproduce the template schedule as much as possible, but

allow workers to deviate when they are idle, by further
stealing work

Optimizing Data Locality for Fork/Join Programs Using Constrained Work Stealing � Jonathan Lifflander � 14 / 30 Optimizing Data Locality for Fork/Join Programs Using Constrained Work Stealing14 / 30

Experimental Setup

� Intel 80-core machine
I Eight 2.27 GHz E7-8860 processors, each with 10 cores
I Connected via Intel QPI 6.4 GT/s
I 2 TB of DRAM
I Compiled with GNU GCC version 4.3.4

I MIT Cilk 5.4.6 translator or GCC and OpenMP 3.0 (version 200805)
F We tried using OpenMP with ICC (Intel OpenMP implementation), but the

we found no significant scaling difference
I Machine runs Red Hat Linux version 4.4.7-3
I Configured to use 4 KB pages
I All of our codes set the affinity of threads

F First 10 threads always go to a single socket

Optimizing Data Locality for Fork/Join Programs Using Constrained Work Stealing � Jonathan Lifflander � 15 / 30 Optimizing Data Locality for Fork/Join Programs Using Constrained Work Stealing15 / 30

Experimental Setup

� Intel 80-core machine
I Eight 2.27 GHz E7-8860 processors, each with 10 cores
I Connected via Intel QPI 6.4 GT/s
I 2 TB of DRAM
I Compiled with GNU GCC version 4.3.4
I MIT Cilk 5.4.6 translator or GCC and OpenMP 3.0 (version 200805)

F We tried using OpenMP with ICC (Intel OpenMP implementation), but the
we found no significant scaling difference

I Machine runs Red Hat Linux version 4.4.7-3

I Configured to use 4 KB pages
I All of our codes set the affinity of threads

F First 10 threads always go to a single socket

Optimizing Data Locality for Fork/Join Programs Using Constrained Work Stealing � Jonathan Lifflander � 15 / 30 Optimizing Data Locality for Fork/Join Programs Using Constrained Work Stealing15 / 30

Experimental Setup

� Intel 80-core machine
I Eight 2.27 GHz E7-8860 processors, each with 10 cores
I Connected via Intel QPI 6.4 GT/s
I 2 TB of DRAM
I Compiled with GNU GCC version 4.3.4
I MIT Cilk 5.4.6 translator or GCC and OpenMP 3.0 (version 200805)

F We tried using OpenMP with ICC (Intel OpenMP implementation), but the
we found no significant scaling difference

I Machine runs Red Hat Linux version 4.4.7-3
I Configured to use 4 KB pages

I All of our codes set the affinity of threads
F First 10 threads always go to a single socket

Optimizing Data Locality for Fork/Join Programs Using Constrained Work Stealing � Jonathan Lifflander � 15 / 30 Optimizing Data Locality for Fork/Join Programs Using Constrained Work Stealing15 / 30

Experimental Setup

� Intel 80-core machine
I Eight 2.27 GHz E7-8860 processors, each with 10 cores
I Connected via Intel QPI 6.4 GT/s
I 2 TB of DRAM
I Compiled with GNU GCC version 4.3.4
I MIT Cilk 5.4.6 translator or GCC and OpenMP 3.0 (version 200805)

F We tried using OpenMP with ICC (Intel OpenMP implementation), but the
we found no significant scaling difference

I Machine runs Red Hat Linux version 4.4.7-3
I Configured to use 4 KB pages
I All of our codes set the affinity of threads

F First 10 threads always go to a single socket

Optimizing Data Locality for Fork/Join Programs Using Constrained Work Stealing � Jonathan Lifflander � 15 / 30 Optimizing Data Locality for Fork/Join Programs Using Constrained Work Stealing15 / 30

(2) Evolving the Schedule
→ RELWS: How well does it work?

 0

 1

 2

 3

 4

 5

p = 20 p = 40 p = 60

E
xe

cu
ti

on
 T

im
e

(s
)

fib(48) default p-10 Threads
fib(48) default p Threads
fib(48) RelWS(p-10) on p

Optimizing Data Locality for Fork/Join Programs Using Constrained Work Stealing � Jonathan Lifflander � 16 / 30 Optimizing Data Locality for Fork/Join Programs Using Constrained Work Stealing16 / 30

(2) Evolving the Schedule
→ RELWS: How well does it work?

 0

 1

 2

 3

 4

 5

E
xe

cu
ti

on
 T

im
e

(s
)

fib(48)
fib(48) StOWS, slow worker
fib(48) RelWS, slow worker

Optimizing Data Locality for Fork/Join Programs Using Constrained Work Stealing � Jonathan Lifflander � 17 / 30 Optimizing Data Locality for Fork/Join Programs Using Constrained Work Stealing17 / 30

Benchmarks

Benchmark Problem Configuration Tasks

heat nx = ny = 32768 block = 64x8192 2k
floyd-warshall n = 32768 block = 64x4096 4k

fdtd ey = ex = hz = 32768 block = 64x8192 2k
NAS cg NA=221, NNZ=15 rows = 1024 2k

NAS mg N{X,Y,Z}=1024,LM=11 block=16x16x4MB 64–4k
parallel prefix N = 256 MB block = 512 512

Optimizing Data Locality for Fork/Join Programs Using Constrained Work Stealing � Jonathan Lifflander � 18 / 30 Optimizing Data Locality for Fork/Join Programs Using Constrained Work Stealing18 / 30

(3) Re-using the Schedule
→ Overhead of Constrained Work Stealing (on 80 Cores)

 0.7
 0.8
 0.9

 1
 1.1
 1.2
 1.3

heat floyd-warshall fdtd cg mg parallel prefix

Trace StOWS StUWS RelWS

Mean normalized ratio (y-axis) compared to default Cilk implementation. Error
bars are relative standard deviation with a sample size of 5.

Optimizing Data Locality for Fork/Join Programs Using Constrained Work Stealing � Jonathan Lifflander � 19 / 30 Optimizing Data Locality for Fork/Join Programs Using Constrained Work Stealing19 / 30

Building a User-specified Schedule

� The user builds a mapping using an API we provide

I API: designateAfterNextSpawn(int worker)
I STUWS is used to schedule that mapping
I The runtime builds a Steal Tree that is used as a template

schedule

Optimizing Data Locality for Fork/Join Programs Using Constrained Work Stealing � Jonathan Lifflander � 20 / 30 Optimizing Data Locality for Fork/Join Programs Using Constrained Work Stealing20 / 30

Building a User-specified Schedule

� The user builds a mapping using an API we provide
I API: designateAfterNextSpawn(int worker)

I STUWS is used to schedule that mapping
I The runtime builds a Steal Tree that is used as a template

schedule

Optimizing Data Locality for Fork/Join Programs Using Constrained Work Stealing � Jonathan Lifflander � 20 / 30 Optimizing Data Locality for Fork/Join Programs Using Constrained Work Stealing20 / 30

Building a User-specified Schedule

� The user builds a mapping using an API we provide
I API: designateAfterNextSpawn(int worker)
I STUWS is used to schedule that mapping

I The runtime builds a Steal Tree that is used as a template
schedule

Optimizing Data Locality for Fork/Join Programs Using Constrained Work Stealing � Jonathan Lifflander � 20 / 30 Optimizing Data Locality for Fork/Join Programs Using Constrained Work Stealing20 / 30

Building a User-specified Schedule

� The user builds a mapping using an API we provide
I API: designateAfterNextSpawn(int worker)
I STUWS is used to schedule that mapping
I The runtime builds a Steal Tree that is used as a template

schedule

Optimizing Data Locality for Fork/Join Programs Using Constrained Work Stealing � Jonathan Lifflander � 20 / 30 Optimizing Data Locality for Fork/Join Programs Using Constrained Work Stealing20 / 30

Whole Program Locality Optimization

� We have grouped the applications into several
different categories

I Iterative, matching structure (heat, fdtd, floyd-warshall)
F Extract template schedule, apply RELWS for five iterations until

convergence, then use STOWS
I Iterative, differing structure (NAS cg)

F Start with random work-stealing on kernel, refine with RELWS until
convergence, then use STOWS

I Iterative, multiple structures (NAS mg)
F We evaluate two approaches: using the same schedule across all

kernels, and using a different schedule for each kernel
I Non-iterative, matching structure (parallel prefix)

F Re-use schedule from initialization for other phases with STUWS

Optimizing Data Locality for Fork/Join Programs Using Constrained Work Stealing � Jonathan Lifflander � 21 / 30 Optimizing Data Locality for Fork/Join Programs Using Constrained Work Stealing21 / 30

Whole Program Locality Optimization

� We have grouped the applications into several
different categories
I Iterative, matching structure (heat, fdtd, floyd-warshall)

F Extract template schedule, apply RELWS for five iterations until
convergence, then use STOWS

I Iterative, differing structure (NAS cg)
F Start with random work-stealing on kernel, refine with RELWS until

convergence, then use STOWS
I Iterative, multiple structures (NAS mg)

F We evaluate two approaches: using the same schedule across all
kernels, and using a different schedule for each kernel

I Non-iterative, matching structure (parallel prefix)
F Re-use schedule from initialization for other phases with STUWS

Optimizing Data Locality for Fork/Join Programs Using Constrained Work Stealing � Jonathan Lifflander � 21 / 30 Optimizing Data Locality for Fork/Join Programs Using Constrained Work Stealing21 / 30

Whole Program Locality Optimization

� We have grouped the applications into several
different categories
I Iterative, matching structure (heat, fdtd, floyd-warshall)

F Extract template schedule, apply RELWS for five iterations until
convergence, then use STOWS

I Iterative, differing structure (NAS cg)
F Start with random work-stealing on kernel, refine with RELWS until

convergence, then use STOWS

I Iterative, multiple structures (NAS mg)
F We evaluate two approaches: using the same schedule across all

kernels, and using a different schedule for each kernel
I Non-iterative, matching structure (parallel prefix)

F Re-use schedule from initialization for other phases with STUWS

Optimizing Data Locality for Fork/Join Programs Using Constrained Work Stealing � Jonathan Lifflander � 21 / 30 Optimizing Data Locality for Fork/Join Programs Using Constrained Work Stealing21 / 30

Whole Program Locality Optimization

� We have grouped the applications into several
different categories
I Iterative, matching structure (heat, fdtd, floyd-warshall)

F Extract template schedule, apply RELWS for five iterations until
convergence, then use STOWS

I Iterative, differing structure (NAS cg)
F Start with random work-stealing on kernel, refine with RELWS until

convergence, then use STOWS
I Iterative, multiple structures (NAS mg)

F We evaluate two approaches: using the same schedule across all
kernels, and using a different schedule for each kernel

I Non-iterative, matching structure (parallel prefix)
F Re-use schedule from initialization for other phases with STUWS

Optimizing Data Locality for Fork/Join Programs Using Constrained Work Stealing � Jonathan Lifflander � 21 / 30 Optimizing Data Locality for Fork/Join Programs Using Constrained Work Stealing21 / 30

Whole Program Locality Optimization

� We have grouped the applications into several
different categories
I Iterative, matching structure (heat, fdtd, floyd-warshall)

F Extract template schedule, apply RELWS for five iterations until
convergence, then use STOWS

I Iterative, differing structure (NAS cg)
F Start with random work-stealing on kernel, refine with RELWS until

convergence, then use STOWS
I Iterative, multiple structures (NAS mg)

F We evaluate two approaches: using the same schedule across all
kernels, and using a different schedule for each kernel

I Non-iterative, matching structure (parallel prefix)
F Re-use schedule from initialization for other phases with STUWS

Optimizing Data Locality for Fork/Join Programs Using Constrained Work Stealing � Jonathan Lifflander � 21 / 30 Optimizing Data Locality for Fork/Join Programs Using Constrained Work Stealing21 / 30

Whole Program Locality Optimization
→ Data redistribution cost (for the first few iterations)

 0

 5

 10

 15

 20

 25

 30

 1 4 10 20 40 80

T
im

e
(s

ec
)

Number of threads

mg

fdtd

floyd-warshall

heat

cg

Optimizing Data Locality for Fork/Join Programs Using Constrained Work Stealing � Jonathan Lifflander � 22 / 30 Optimizing Data Locality for Fork/Join Programs Using Constrained Work Stealing22 / 30

Whole Program Locality Optimization
→ Iterative, matching structure

heat floyd-warshall

 0

 5

 10

 15

 20

 25

 30

 35

 40

 1 4 10 20 40 80

S
p
ee

d
u
p

 0

 5

 10

 15

 20

 25

 30

 35

 40

 1 4 10 20 40 80

Number of Threads Number of Threads

Cilk interleave OMP tasks (interleave) Constrained Iter. RelWS

Optimizing Data Locality for Fork/Join Programs Using Constrained Work Stealing � Jonathan Lifflander � 23 / 30 Optimizing Data Locality for Fork/Join Programs Using Constrained Work Stealing23 / 30

Whole Program Locality Optimization
→ Iterative, differing structure

NAS cg

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 1 4 10 20 40 80

S
p
ee

d
u
p

Number of threads

Cilk interleave OMP tasks (interleave) Constrained Iter. RelWS

Optimizing Data Locality for Fork/Join Programs Using Constrained Work Stealing � Jonathan Lifflander � 24 / 30 Optimizing Data Locality for Fork/Join Programs Using Constrained Work Stealing24 / 30

Whole Program Locality Optimization
→ Iterative, multiple structures

NAS mg

 0

 5

 10

 15

 20

 25

 30

 35

 1 4 10 20 40 80

Number of threads

Cilk interleave OMP tasks (interleave) Constrained RelWS 1 Constrained RelWS 2

Optimizing Data Locality for Fork/Join Programs Using Constrained Work Stealing � Jonathan Lifflander � 25 / 30 Optimizing Data Locality for Fork/Join Programs Using Constrained Work Stealing25 / 30

Whole Program Locality Optimization
→ Non-iterative, matching structure

parallel prefix

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 1 4 10 20 40 80

Number of threads

Cilk interleave OMP tasks (interleave) Constrained RelWS 1 Constrained StUWS

Optimizing Data Locality for Fork/Join Programs Using Constrained Work Stealing � Jonathan Lifflander � 26 / 30 Optimizing Data Locality for Fork/Join Programs Using Constrained Work Stealing26 / 30

Dynamic Coarsening

� Finding the ideal grain size is difficult
I Too large leads to load imbalance
I Too small increases runtime overheads
I Key observation: all parts of the Steal Tree do not equally

contribute to locality and load balance
I Steals higher in the Steal Tree correspond to large portions

of work
I We start with a fine-grained schedule and iteratively

coarsen by pruning the Steal Tree and using STUWS
I Using this technique we are able to achieve nearly the

same performance as using the optimal chunk size, but
starting with a much smaller chunk size

I Details are in the paper

Optimizing Data Locality for Fork/Join Programs Using Constrained Work Stealing � Jonathan Lifflander � 27 / 30 Optimizing Data Locality for Fork/Join Programs Using Constrained Work Stealing27 / 30

Dynamic Coarsening

� Finding the ideal grain size is difficult

I Too large leads to load imbalance
I Too small increases runtime overheads
I Key observation: all parts of the Steal Tree do not equally

contribute to locality and load balance
I Steals higher in the Steal Tree correspond to large portions

of work
I We start with a fine-grained schedule and iteratively

coarsen by pruning the Steal Tree and using STUWS
I Using this technique we are able to achieve nearly the

same performance as using the optimal chunk size, but
starting with a much smaller chunk size

I Details are in the paper

Optimizing Data Locality for Fork/Join Programs Using Constrained Work Stealing � Jonathan Lifflander � 27 / 30 Optimizing Data Locality for Fork/Join Programs Using Constrained Work Stealing27 / 30

Dynamic Coarsening

� Finding the ideal grain size is difficult
I Too large leads to load imbalance

I Too small increases runtime overheads
I Key observation: all parts of the Steal Tree do not equally

contribute to locality and load balance
I Steals higher in the Steal Tree correspond to large portions

of work
I We start with a fine-grained schedule and iteratively

coarsen by pruning the Steal Tree and using STUWS
I Using this technique we are able to achieve nearly the

same performance as using the optimal chunk size, but
starting with a much smaller chunk size

I Details are in the paper

Optimizing Data Locality for Fork/Join Programs Using Constrained Work Stealing � Jonathan Lifflander � 27 / 30 Optimizing Data Locality for Fork/Join Programs Using Constrained Work Stealing27 / 30

Dynamic Coarsening

� Finding the ideal grain size is difficult
I Too large leads to load imbalance
I Too small increases runtime overheads

I Key observation: all parts of the Steal Tree do not equally
contribute to locality and load balance

I Steals higher in the Steal Tree correspond to large portions
of work

I We start with a fine-grained schedule and iteratively
coarsen by pruning the Steal Tree and using STUWS

I Using this technique we are able to achieve nearly the
same performance as using the optimal chunk size, but
starting with a much smaller chunk size

I Details are in the paper

Optimizing Data Locality for Fork/Join Programs Using Constrained Work Stealing � Jonathan Lifflander � 27 / 30 Optimizing Data Locality for Fork/Join Programs Using Constrained Work Stealing27 / 30

Dynamic Coarsening

� Finding the ideal grain size is difficult
I Too large leads to load imbalance
I Too small increases runtime overheads
I Key observation: all parts of the Steal Tree do not equally

contribute to locality and load balance

I Steals higher in the Steal Tree correspond to large portions
of work

I We start with a fine-grained schedule and iteratively
coarsen by pruning the Steal Tree and using STUWS

I Using this technique we are able to achieve nearly the
same performance as using the optimal chunk size, but
starting with a much smaller chunk size

I Details are in the paper

Optimizing Data Locality for Fork/Join Programs Using Constrained Work Stealing � Jonathan Lifflander � 27 / 30 Optimizing Data Locality for Fork/Join Programs Using Constrained Work Stealing27 / 30

Dynamic Coarsening

� Finding the ideal grain size is difficult
I Too large leads to load imbalance
I Too small increases runtime overheads
I Key observation: all parts of the Steal Tree do not equally

contribute to locality and load balance
I Steals higher in the Steal Tree correspond to large portions

of work

I We start with a fine-grained schedule and iteratively
coarsen by pruning the Steal Tree and using STUWS

I Using this technique we are able to achieve nearly the
same performance as using the optimal chunk size, but
starting with a much smaller chunk size

I Details are in the paper

Optimizing Data Locality for Fork/Join Programs Using Constrained Work Stealing � Jonathan Lifflander � 27 / 30 Optimizing Data Locality for Fork/Join Programs Using Constrained Work Stealing27 / 30

Dynamic Coarsening

� Finding the ideal grain size is difficult
I Too large leads to load imbalance
I Too small increases runtime overheads
I Key observation: all parts of the Steal Tree do not equally

contribute to locality and load balance
I Steals higher in the Steal Tree correspond to large portions

of work
I We start with a fine-grained schedule and iteratively

coarsen by pruning the Steal Tree and using STUWS

I Using this technique we are able to achieve nearly the
same performance as using the optimal chunk size, but
starting with a much smaller chunk size

I Details are in the paper

Optimizing Data Locality for Fork/Join Programs Using Constrained Work Stealing � Jonathan Lifflander � 27 / 30 Optimizing Data Locality for Fork/Join Programs Using Constrained Work Stealing27 / 30

Dynamic Coarsening

� Finding the ideal grain size is difficult
I Too large leads to load imbalance
I Too small increases runtime overheads
I Key observation: all parts of the Steal Tree do not equally

contribute to locality and load balance
I Steals higher in the Steal Tree correspond to large portions

of work
I We start with a fine-grained schedule and iteratively

coarsen by pruning the Steal Tree and using STUWS
I Using this technique we are able to achieve nearly the

same performance as using the optimal chunk size, but
starting with a much smaller chunk size

I Details are in the paper

Optimizing Data Locality for Fork/Join Programs Using Constrained Work Stealing � Jonathan Lifflander � 27 / 30 Optimizing Data Locality for Fork/Join Programs Using Constrained Work Stealing27 / 30

Dynamic Coarsening

� Finding the ideal grain size is difficult
I Too large leads to load imbalance
I Too small increases runtime overheads
I Key observation: all parts of the Steal Tree do not equally

contribute to locality and load balance
I Steals higher in the Steal Tree correspond to large portions

of work
I We start with a fine-grained schedule and iteratively

coarsen by pruning the Steal Tree and using STUWS
I Using this technique we are able to achieve nearly the

same performance as using the optimal chunk size, but
starting with a much smaller chunk size

I Details are in the paper

Optimizing Data Locality for Fork/Join Programs Using Constrained Work Stealing � Jonathan Lifflander � 27 / 30 Optimizing Data Locality for Fork/Join Programs Using Constrained Work Stealing27 / 30

Conclusion

� We present a comprehensive approach to improving
NUMA locality for work stealing:

I User-specified
I Automatic
I Up to 2.5x performance improvement on 80 cores

compared to default Cilk!
� Future work

I Can we use static compiler analysis to better match phases
and understand access patterns?

Optimizing Data Locality for Fork/Join Programs Using Constrained Work Stealing � Jonathan Lifflander � 28 / 30 Optimizing Data Locality for Fork/Join Programs Using Constrained Work Stealing28 / 30

Conclusion

� We present a comprehensive approach to improving
NUMA locality for work stealing:
I User-specified
I Automatic

I Up to 2.5x performance improvement on 80 cores
compared to default Cilk!

� Future work
I Can we use static compiler analysis to better match phases

and understand access patterns?

Optimizing Data Locality for Fork/Join Programs Using Constrained Work Stealing � Jonathan Lifflander � 28 / 30 Optimizing Data Locality for Fork/Join Programs Using Constrained Work Stealing28 / 30

Conclusion

� We present a comprehensive approach to improving
NUMA locality for work stealing:
I User-specified
I Automatic
I Up to 2.5x performance improvement on 80 cores

compared to default Cilk!

� Future work
I Can we use static compiler analysis to better match phases

and understand access patterns?

Optimizing Data Locality for Fork/Join Programs Using Constrained Work Stealing � Jonathan Lifflander � 28 / 30 Optimizing Data Locality for Fork/Join Programs Using Constrained Work Stealing28 / 30

Conclusion

� We present a comprehensive approach to improving
NUMA locality for work stealing:
I User-specified
I Automatic
I Up to 2.5x performance improvement on 80 cores

compared to default Cilk!
� Future work

I Can we use static compiler analysis to better match phases
and understand access patterns?

Optimizing Data Locality for Fork/Join Programs Using Constrained Work Stealing � Jonathan Lifflander � 28 / 30 Optimizing Data Locality for Fork/Join Programs Using Constrained Work Stealing28 / 30

Questions?

Optimizing Data Locality for Fork/Join Programs Using Constrained Work Stealing � Jonathan Lifflander � 29 / 30 Optimizing Data Locality for Fork/Join Programs Using Constrained Work Stealing29 / 30

Evolving the Schedule
→ Constrained Work-Stealing Schedulers

tim
e

Default
scheduler

StOWS
scheduler

RelWS
scheduler

0

1 2

work idle steal setup donationsteal attempt

StUWS
scheduler

0

1 2

0

1 2

0

1 2

Optimizing Data Locality for Fork/Join Programs Using Constrained Work Stealing � Jonathan Lifflander � 30 / 30 Optimizing Data Locality for Fork/Join Programs Using Constrained Work Stealing30 / 30

