Adoption Protocols for Fanout-Optimal
Fault-Tolerant Termination Detection

Jonathan Lifflander, Phil Miller, Laxmikant V. Kale
{j1iff12, millel121, kale}@illinois.edu

University of lllinois Urbana-Champaign

February 26, 2013

Adoption Protocols for

Fanout-Optimal

Fault-Tolerant

Termination Detection

Termination Detection

_ What is it?
Termination Detection —

What is it?
Termination Detection — Why isit relevant?

What is it?
Termination Detection — Whyisit relevant?
Algorithm overview

Fault-Tolerant — Problem description

What is it?

Termination Detection — Whyisit relevant?
Algorithm overview

Problem description
Fault-Tolerant — Previous work
What is it?

Termination Detection — Whyisit relevant?
Algorithm overview

Fanout-Optimal — Theoretical bounds

Problem description
Fault-Tolerant — Previous work
What is it?

Termination Detection — Whyisit relevant?
Algorithm overview

Adoption Protocols for

Fanout-Optimal

Fault-Tolerant

Termination Detection

Trio of protocols:

Theoretical bounds

Problem description
Previous work

What is it?
Why is it relevant?
Algorithm overview

Adoption Protocols for

Fanout-Optimal

Fault-Tolerant

Termination Detection

Trio of protocols:
{INDEP,RELLAZY,RELEAGER}

Theoretical bounds

Problem description
Previous work

What is it?
Why is it relevant?
Algorithm overview

Adoption Protocols for

Fanout-Optimal

Fault-Tolerant

Termination Detection

Trio of protocols:
{INDEP,RELLAZY,RELEAGER}
Probabilistic model

Theoretical bounds

Problem description
Previous work

What is it?
Why is it relevant?
Algorithm overview

Adoption Protocols for

Fanout-Optimal

Fault-Tolerant

Termination Detection

Trio of protocols:
{INDEP,RELLAZY,RELEAGER}

Probabilistic model

High survivability

Theoretical bounds

Problem description
Previous work

What is it?
Why is it relevant?
Algorithm overview

Adoption Protocols for

Fanout-Optimal

Fault-Tolerant

Termination Detection

Trio of protocols:
{INDEP,RELLAZY,RELEAGER}

Probabilistic model

High survivability

Empirical Results

Theoretical bounds

Problem description
Previous work

What is it?
Why is it relevant?
Algorithm overview

Termination Detection
— What is it?

= The “global” system state when

» all processes are idle and
» no messages are in flight

Adoption Protocols for Fanout-Optimal Fault-Tolerant Termination Detection ¢4 Jonathan Lifflander ¢ 7/25

Termination Detection
— What is it?

® The “global” system state when

» all processes are idle and
» no messages are in flight

= Fundamental assumptions
» A process is any schedulable entity: thread, object, etc.

Adoption Protocols for Fanout-Optimal Fault-Tolerant Termination Detection ¢4 Jonathan Lifflander ¢4 7/25

Termination Detection
— What is it?

® The “global” system state when

» all processes are idle and
» no messages are in flight

= Fundamental assumptions

» A process is any schedulable entity: thread, object, etc.
» A process is either active or passive

Adoption Protocols for Fanout-Optimal Fault-Tolerant Termination Detection * Jonathan Lifflander ¢ 7125

Termination Detection
— What is it?

® The “global” system state when

» all processes are idle and
» no messages are in flight

= Fundamental assumptions

» A process is any schedulable entity: thread, object, etc.
» A process is either active or passive
» A process starts passive (except for the root)

Adoption Protocols for Fanout-Optimal Fault-Tolerant Termination Detection * Jonathan Lifflander ¢ 7125

Termination Detection
— What is it?

® The “global” system state when
» all processes are idle and
» no messages are in flight
= Fundamental assumptions
» A process is any schedulable entity: thread, object, etc.
» A process is either active or passive
» A process starts passive (except for the root)
» A process only becomes active when it receives a message

Adoption Protocols for Fanout-Optimal Fault-Tolerant Termination Detection * Jonathan Lifflander

¢

7/25

Termination Detection
— What is it?

® The “global” system state when

» all processes are idle and
» no messages are in flight
= Fundamental assumptions
A process is any schedulable entity: thread, object, etc.
» A process is either active or passive
» A process starts passive (except for the root)
» A process only becomes active when it receives a message
» A process can only send messages in the active state

v

Adoption Protocols for Fanout-Optimal Fault-Tolerant Termination Detection * Jonathan Lifflander

¢

7/25

Termination Detection
— What is it?

® The “global” system state when

>

>

all processes are idle and
no messages are in flight

= Fundamental assumptions

>

vV vy VY VvYYy

A process is any schedulable entity: thread, object, etc.

A process is either active or passive

A process starts passive (except for the root)

A process only becomes active when it receives a message

A process can only send messages in the active state

A process transitions back to passive after processing a message

Adoption Protocols for Fanout-Optimal Fault-Tolerant Termination Detection * Jonathan Lifflander ¢ 7125

Termination Detection
— What is it?

® The “global” system state when

>

>

all processes are idle and
no messages are in flight

= Fundamental assumptions

>

vV VY VY VY VY

A process is any schedulable entity: thread, object, etc.

A process is either active or passive

A process starts passive (except for the root)

A process only becomes active when it receives a message

A process can only send messages in the active state

A process transitions back to passive after processing a message
idle = passive

Adoption Protocols for Fanout-Optimal Fault-Tolerant Termination Detection * Jonathan Lifflander ¢ 7125

Termination Detection
— Why is it relevant?

® As parallel computations become more dynamic, detecting
termination is non-trivial

Adoption Protocols for Fanout-Optimal Fault-Tolerant Termination Detection ¢4 Jonathan Lifflander ¢ 8/25

Termination Detection
— Why is it relevant?

® As parallel computations become more dynamic, detecting
termination is non-trivial

» Adaptive mesh refinement*

*Akhil Langer, Jonathan Lifflander, Phil Miller, Kuo-Chuan Pan, Laxmikant V. Kale, Paul Ricker. Scalable Algorithms for
Distributed-Memory Adaptive Mesh Refinement. In Proceedings of the 24th International Symposium on Computer Architecture and
High Performance Computing (SBAC-PAD "12).

Adoption Protocols for Fanout-Optimal Fault-Tolerant Termination Detection ¢4 Jonathan Lifflander ¢ 8/25

Termination Detection
— Why is it relevant?

m As parallel computations become more dynamic, detecting
termination is non-trivial
» Adaptive mesh refinement*
» Dynamic data exchanges (e.g. SPMV)

*Akhil Langer, Jonathan Lifflander, Phil Miller, Kuo-Chuan Pan, Laxmikant V. Kale, Paul Ricker. Scalable Algorithms for
Distributed-Memory Adaptive Mesh Refinement. In Proceedings of the 24th International Symposium on Computer Architecture and
High Performance Computing (SBAC-PAD ’12).

Adoption Protocols for Fanout-Optimal Fault-Tolerant Termination Detection * Jonathan Lifflander ¢ 8/25

Termination Detection
— Why is it relevant?

® As parallel computations become more dynamic, detecting
termination is non-trivial
» Adaptive mesh refinement*
» Dynamic data exchanges (e.g. SPMV)
» Distributed-memory work stealing — task scheduling?

*Akhil Langer, Jonathan Lifflander, Phil Miller, Kuo-Chuan Pan, Laxmikant V. Kale, Paul Ricker. Scalable Algorithms for
Distributed-Memory Adaptive Mesh Refinement. In Proceedings of the 24th International Symposium on Computer Architecture and
High Performance Computing (SBAC-PAD ’12).

James Dinan, D. Brian Larkins, P. Sadayappan, Sriram Krishnamoorthy, and Jarek Nieplocha. Scalable work stealing. In
Proceedings of the Conference on High Performance Computing Networking, Storage and Analysis (SC '09).

Adoption Protocols for Fanout-Optimal Fault-Tolerant Termination Detection * Jonathan Lifflander ¢ 8/25

Termination Detection

— Why is it relevant?

® As parallel computations become more dynamic, detecting
termination is non-trivial

Adaptive mesh refinement*

Dynamic data exchanges (e.g. SPMV)

Distributed-memory work stealing — task scheduling®

Runtimes with message-driven execution®

v vy VvYyYy

*Akhil Langer, Jonathan Lifflander, Phil Miller, Kuo-Chuan Pan, Laxmikant V. Kale, Paul Ricker. Scalable Algorithms for
Distributed-Memory Adaptive Mesh Refinement. In Proceedings of the 24th International Symposium on Computer Architecture and
High Performance Computing (SBAC-PAD ’12).

James Dinan, D. Brian Larkins, P. Sadayappan, Sriram Krishnamoorthy, and Jarek Nieplocha. Scalable work stealing. In
Proceedings of the Conference on High Performance Computing Networking, Storage and Analysis (SC '09).

j'—Jeremiah Willcock, Torsten Hoefler, Nicholas Edmonds, Andrew Lumsdaine. Active pebbles: parallel programming for data-driven
applications. Proceedings of the international conference on Supercomputing. ICS’11.

Adoption Protocols for Fanout-Optimal Fault-Tolerant Termination Detection * Jonathan Lifflander ¢ 8/25

Termination Detection
— Algorithms

= Many different variants (with different tradeoffs)
» Parental responsibility?
» Wave-based
» Credit-recovery

§

Edsger W. Dijkstra, C.S. Scholten. Termination detection for diffusing computations. Information Processing Letters. 1980.

Adoption Protocols for Fanout-Optimal Fault-Tolerant Termination Detection ¢4 Jonathan Lifflander ¢ 9/25

Termination Detection
— Algorithm Overview : Parental Responsibility

Adoption Protocols for Fanout-Optimal Fault-Tolerant Termination Detection ¢ Jonathan Lifflander 3 10/25

Termination Detection
— Algorithm Overview : Parental Responsibility

Adoption Protocols for Fanout-Optimal Fault-Tolerant Termination Detection ¢ Jonathan Lifflander 3 10/25

Termination Detection
— Algorithm Overview : Parental Responsibility

Adoption Protocols for Fanout-Optimal Fault-Tolerant Termination Detection ¢ Jonathan Lifflander 3 10/25

Termination Detection
— Algorithm Overview : Parental Responsibility

Adoption Protocols for Fanout-Optimal Fault-Tolerant Termination Detection ¢ Jonathan Lifflander 3 10/25

Termination Detection
— Algorithm Overview : Parental Responsibility

Adoption Protocols for Fanout-Optimal Fault-Tolerant Termination Detection ¢ Jonathan Lifflander 3 10/25

Termination Detection
— Algorithm Overview : Parental Responsibility

Adoption Protocols for Fanout-Optimal Fault-Tolerant Termination Detection ¢ Jonathan Lifflander 3 10/25

Termination Detection
— Algorithm Overview : Parental Responsibility

Adoption Protocols for Fanout-Optimal Fault-Tolerant Termination Detection ¢ Jonathan Lifflander 3 10/25

Termination Detection
— Algorithm Overview : Parental Responsibility

Adoption Protocols for Fanout-Optimal Fault-Tolerant Termination Detection ¢ Jonathan Lifflander 3 10/25

Termination Detection
— Algorithm Overview : Parental Responsibility

Adoption Protocols for Fanout-Optimal Fault-Tolerant Termination Detection ¢ Jonathan Lifflander 3 10/25

Termination Detection
— Algorithm Overview : Parental Responsibility

Adoption Protocols for Fanout-Optimal Fault-Tolerant Termination Detection ¢ Jonathan Lifflander 3 10/25

Termination Detection
— Algorithm Overview : Parental Responsibility

Adoption Protocols for Fanout-Optimal Fault-Tolerant Termination Detection ¢ Jonathan Lifflander 3 10/25

Termination Detection
— Algorithm Overview : Parental Responsibility

Adoption Protocols for Fanout-Optimal Fault-Tolerant Termination Detection ¢ Jonathan Lifflander 3 10/25

Termination Detection
— Algorithm Overview : Parental Responsibility

Adoption Protocols for Fanout-Optimal Fault-Tolerant Termination Detection ¢ Jonathan Lifflander 3 10/25

Termination Detection
— Algorithm Overview : Parental Responsibility

Adoption Protocols for Fanout-Optimal Fault-Tolerant Termination Detection ¢ Jonathan Lifflander 3 10/25

Termination Detection
— Algorithm Overview : Parental Responsibility

Adoption Protocols for Fanout-Optimal Fault-Tolerant Termination Detection ¢ Jonathan Lifflander 3 10/25

git://charm.cs.illinois.edu/terminator.git

git://charm.cs.illinois.edu/terminator.git

General C++ and Java library

git://charm.cs.illinois.edu/terminator.git

Implemented in three parallel runtime systems

git://charm.cs.illinois.edu/terminator.git

Being made fault-tolerant based on this work

Fault-Tolerant Termination Detection

— Problem Description

= Approaches to fault-tolerance
» General runtime-system support: checkpointing, message-logging, etc.

Adoption Protocols for Fanout-Optimal Fault-Tolerant Termination Detection ¢ Jonathan Lifflander ¢4 12/25

Fault-Tolerant Termination Detection

— Problem Description

= Approaches to fault-tolerance

» General runtime-system support: checkpointing, message-logging, etc.
» Algorithm-specific (checksum-based approaches for math libraries)

Adoption Protocols for Fanout-Optimal Fault-Tolerant Termination Detection ¢ Jonathan Lifflander ¢4 12/25

Fault-Tolerant Termination Detection

— Problem Description

= Approaches to fault-tolerance

» General runtime-system support: checkpointing, message-logging, etc.

» Algorithm-specific (checksum-based approaches for math libraries)

» Component-specific: runtime system is composed of a set of
self-healing components that all handle faults in their own optimized
way — so-called scale invariance¥

YAl Geist and Christian Engelmann. Development of Naturally Fault Tolerant Algorithms
for Computing on 100,000 Processors. 2002.

Adoption Protocols for Fanout-Optimal Fault-Tolerant Termination Detection ¢ Jonathan Lifflander * 12/25

Fault-Tolerant Termination Detection

— Component-specific

m Assume ecosystem is fault tolerant

» Application can recover from faults
» Other runtime system components are fault-tolerant
» Termination can be handled as a modular component

Adoption Protocols for Fanout-Optimal Fault-Tolerant Termination Detection ¢ Jonathan Lifflander ¢4 13/25

Fault-Tolerant Termination Detection

— Previous work

m Distributed computing
» An (n-1)-resilient algorithm for distributed termination detection.!

HTen—Hwang Lai, Li-Fen Wu. An (n-1)-resilient algorithm for distributed termination
detection. Parallel and Distributed Systems, IEEE Transactions. Vol.6, No.1, pp.63-78, Jan
1995.

Adoption Protocols for Fanout-Optimal Fault-Tolerant Termination Detection ¢ Jonathan Lifflander * 14 /25

Fault-Tolerant Termination Detection

— Previous work

m Distributed computing

» An (n-1)-resilient algorithm for distributed termination detection.!
» Recovers from up to n-1 faults in the system!

HTen—Hwang Lai, Li-Fen Wu. An (n-1)-resilient algorithm for distributed termination
detection. Parallel and Distributed Systems, IEEE Transactions. Vol.6, No.1, pp.63-78, Jan
1995.

Adoption Protocols for Fanout-Optimal Fault-Tolerant Termination Detection ¢ Jonathan Lifflander * 14 /25

Fault-Tolerant Termination Detection

— Previous work

m Distributed computing
» An (n-1)-resilient algorithm for distributed termination detection.!
» Recovers from up to n-1 faults in the system!
» But not practical for HPC

HTen—Hwang Lai, Li-Fen Wu. An (n-1)-resilient algorithm for distributed termination
detection. Parallel and Distributed Systems, IEEE Transactions. Vol.6, No.1, pp.63-78, Jan
1995.

Adoption Protocols for Fanout-Optimal Fault-Tolerant Termination Detection ¢ Jonathan Lifflander * 14 /25

Fault-Tolerant Termination Detection

— Previous work

m Distributed computing

An (n-1)-resilient algorithm for distributed termination detection.!
Recovers from up to n-1 faults in the system!

But not practical for HPC

Serializes recovery through the root (one process) of the computation

v

v vy

HTen—Hwang Lai, Li-Fen Wu. An (n-1)-resilient algorithm for distributed termination
detection. Parallel and Distributed Systems, IEEE Transactions. Vol.6, No.1, pp.63-78, Jan
1995.

Adoption Protocols for Fanout-Optimal Fault-Tolerant Termination Detection ¢ Jonathan Lifflander * 14 /25

Fault-Tolerant Termination Detection

— Previous work

m Distributed computing

» An (n-1)-resilient algorithm for distributed termination detection.!
Recovers from up to n-1 faults in the system!

But not practical for HPC

Serializes recovery through the root (one process) of the computation
Requires all processes (even unengaged) to communicate (obviating
many beneficial properties of parental responsibility algorithms)

>
>
>
>

HTen—Hwang Lai, Li-Fen Wu. An (n-1)-resilient algorithm for distributed termination
detection. Parallel and Distributed Systems, IEEE Transactions. Vol.6, No.1, pp.63-78, Jan
1995.

Adoption Protocols for Fanout-Optimal Fault-Tolerant Termination Detection ¢ Jonathan Lifflander * 14 /25

Fault-Tolerant Termination Detection

— Previous work

m Distributed computing

» An (n-1)-resilient algorithm for distributed termination detection.!

» Recovers from up to n-1 faults in the system!

» But not practical for HPC

» Serializes recovery through the root (one process) of the computation

» Requires all processes (even unengaged) to communicate (obviating
many beneficial properties of parental responsibility algorithms)

» Has low overhead on forward execution

HTen—Hwang Lai, Li-Fen Wu. An (n-1)-resilient algorithm for distributed termination
detection. Parallel and Distributed Systems, IEEE Transactions. Vol.6, No.1, pp.63-78, Jan
1995.

Adoption Protocols for Fanout-Optimal Fault-Tolerant Termination Detection ¢ Jonathan Lifflander * 14 /25

Fault-Tolerant Termination Detection
— Goals for HPC

= | ow overhead during forward execution

= Expect to encounter faults that only impact a small subset of the
processes

= Build a scalable algorithm for recovery

Adoption Protocols for Fanout-Optimal Fault-Tolerant Termination Detection ¢ Jonathan Lifflander ¢4 15/25

Termination Detection
— Optimality

® Parental responsibility algorithms
» Message-optimal: in the worst case, they send the lower-bound on

signal count™*
» Where the lower bound is O(m), and m is the total number of

application messages

**K. Mani Chandy and Jayadev Misra. How processes learn. In Proceedings of the forth
annual ACM symposium on Principles of Distributed Computing (PODC ’85).

Adoption Protocols for Fanout-Optimal Fault-Tolerant Termination Detection ¢ Jonathan Lifflander * 16/25

Termination Detection
— Optimality

= Fanout-optimality
» The fanoutor f for a given process is the number of communication
partners it has

Adoption Protocols for Fanout-Optimal Fault-Tolerant Termination Detection ¢ Jonathan Lifflander ¢4 17 /25

Termination Detection
— Optimality

= Fanout-optimality
» The fanoutor f for a given process is the number of communication
partners it has

» Because it follows the communication graph of the application, it will be
as scalable as the application

Adoption Protocols for Fanout-Optimal Fault-Tolerant Termination Detection ¢ Jonathan Lifflander ¢4 17 /25

Termination Detection
— Optimality

= Fanout-optimality
» The fanoutor f for a given process is the number of communication
partners it has

» Because it follows the communication graph of the application, it will be
as scalable as the application

» For parental-responsibility algorithms, this is a dynamic property

Adoption Protocols for Fanout-Optimal Fault-Tolerant Termination Detection ¢ Jonathan Lifflander * 17/25

Termination Detection
— Optimality

= Fanout-optimality
» The fanoutor f for a given process is the number of communication
partners it has
» Because it follows the communication graph of the application, it will be
as scalable as the application
» For parental-responsibility algorithms, this is a dynamic property
» Optimality: in the worst case, the algorithm sends O(f) signals

Adoption Protocols for Fanout-Optimal Fault-Tolerant Termination Detection ¢ Jonathan Lifflander * 17/25

Termination Detection
— Optimality

= Fanout-optimality

» The fanoutor f for a given process is the number of communication
partners it has

» Because it follows the communication graph of the application, it will be
as scalable as the application

» For parental-responsibility algorithms, this is a dynamic property

» Optimality: in the worst case, the algorithm sends O(f) signals

» The fault-tolerance algorithms we present are fanout-optimal

Adoption Protocols for Fanout-Optimal Fault-Tolerant Termination Detection ¢ Jonathan Lifflander * 17/25

Termination Detection

— Fault-tolerance assumptions

= General
» Fail-stop model: failed processes do not recover

Adoption Protocols for Fanout-Optimal Fault-Tolerant Termination Detection ¢ Jonathan Lifflander ¢4 18/25

Termination Detection

— Fault-tolerance assumptions

m General

» Fail-stop model: failed processes do not recover
» External system (or runtime system) provides failure notification

Adoption Protocols for Fanout-Optimal Fault-Tolerant Termination Detection ¢ Jonathan Lifflander ¢4 18/25

Termination Detection

— Fault-tolerance assumptions

m General

» Fail-stop model: failed processes do not recover
» External system (or runtime system) provides failure notification
» No byzantine failures: failed processes do not behave maliciously

Adoption Protocols for Fanout-Optimal Fault-Tolerant Termination Detection ¢ Jonathan Lifflander ¢4 18/25

Termination Detection

— Fault-tolerance assumptions

m General

» Fail-stop model: failed processes do not recover
» External system (or runtime system) provides failure notification
» No byzantine failures: failed processes do not behave maliciously

= Specific

Adoption Protocols for Fanout-Optimal Fault-Tolerant Termination Detection ¢ Jonathan Lifflander ¢4 18/25

Termination Detection

— Fault-tolerance assumptions

m General

» Fail-stop model: failed processes do not recover
» External system (or runtime system) provides failure notification
» No byzantine failures: failed processes do not behave maliciously

= Specific
» Network send fence: messages are “on-the-wire”

Adoption Protocols for Fanout-Optimal Fault-Tolerant Termination Detection ¢ Jonathan Lifflander * 18/25

Termination Detection

— Fault-tolerance assumptions

= General
» Fail-stop model: failed processes do not recover
» External system (or runtime system) provides failure notification
» No byzantine failures: failed processes do not behave maliciously
= Specific
» Network send fence: messages are “on-the-wire”
» Fail-flush: a system notification indicating that in-flight messages from
a failed process have all been received

Adoption Protocols for Fanout-Optimal Fault-Tolerant Termination Detection ¢ Jonathan Lifflander * 18/25

Termination Detection
— The INDEP fault-tolerance protocol

Adoption Protocols for Fanout-Optimal Fault-Tolerant Termination Detection ¢ Jonathan Lifflander 3 19/25

Termination Detection
— The INDEP fault-tolerance protocol

Adoption Protocols for Fanout-Optimal Fault-Tolerant Termination Detection ¢ Jonathan Lifflander 3 19/25

Termination Detection
— The INDEP fault-tolerance protocol

Adoption Protocols for Fanout-Optimal Fault-Tolerant Termination Detection ¢ Jonathan Lifflander 3 19/25

Termination Detection
— The INDEP fault-tolerance protocol

Adoption Protocols for Fanout-Optimal Fault-Tolerant Termination Detection ¢ Jonathan Lifflander 3 19/25

Termination Detection
— The INDEP fault-tolerance protocol

Adoption Protocols for Fanout-Optimal Fault-Tolerant Termination Detection ¢ Jonathan Lifflander 3 19/25

Termination Detection
— The INDEP fault-tolerance protocol

Adoption Protocols for Fanout-Optimal Fault-Tolerant Termination Detection ¢ Jonathan Lifflander 3 19/25

Termination Detection
— The INDEP fault-tolerance protocol

Adoption Protocols for Fanout-Optimal Fault-Tolerant Termination Detection ¢ Jonathan Lifflander 3 19/25

Termination Detection
— The INDEP fault-tolerance protocol

Adoption Protocols for Fanout-Optimal Fault-Tolerant Termination Detection ¢ Jonathan Lifflander 3 19/25

Termination Detection
— The INDEP fault-tolerance protocol

Adoption Protocols for Fanout-Optimal Fault-Tolerant Termination Detection ¢ Jonathan Lifflander 3 19/25

Termination Detection
— The INDEP fault-tolerance protocol

Adoption Protocols for Fanout-Optimal Fault-Tolerant Termination Detection ¢ Jonathan Lifflander 3 19/25

Termination Detection
— The INDEP fault-tolerance protocol

Adoption Protocols for Fanout-Optimal Fault-Tolerant Termination Detection ¢ Jonathan Lifflander 3 19/25

Termination Detection
— The INDEP fault-tolerance protocol

Adoption Protocols for Fanout-Optimal Fault-Tolerant Termination Detection ¢ Jonathan Lifflander 3 19/25

Termination Detection
— The INDEP fault-tolerance protocol

Adoption Protocols for Fanout-Optimal Fault-Tolerant Termination Detection ¢ Jonathan Lifflander 3 19/25

Termination Detection
— The INDEP fault-tolerance protocol

Adoption Protocols for Fanout-Optimal Fault-Tolerant Termination Detection ¢ Jonathan Lifflander 3 19/25

Termination Detection
— The INDEP fault-tolerance protocol

= Tolerates all single-process failures

Adoption Protocols for Fanout-Optimal Fault-Tolerant Termination Detection ¢ Jonathan Lifflander 4 20/25

Termination Detection
— The INDEP fault-tolerance protocol

= Tolerates all single-process failures
= What multi-process failures does it not tolerate?

Adoption Protocols for Fanout-Optimal Fault-Tolerant Termination Detection ¢ Jonathan Lifflander 4 20/25

Termination Detection
— The INDEP fault-tolerance protocol

= Tolerates all single-process failures
= What multi-process failures does it not tolerate?
» INDEP will tolerate all failures except for parent-child pairs...

Adoption Protocols for Fanout-Optimal Fault-Tolerant Termination Detection ¢ Jonathan Lifflander 4 20/25

Termination Detection
— The INDEP fault-tolerance protocol

m Tolerates all single-process failures
= What multi-process failures does it not tolerate?

» INDEP will tolerate all failures except for parent-child pairs...
» But, INDEP cannot detect this case, so it has to fail conservatively if the
failure set has communicating pairs in it

Adoption Protocols for Fanout-Optimal Fault-Tolerant Termination Detection ¢ Jonathan Lifflander * 20/25

Termination Detection
— The INDEP fault-tolerance protocol

Adoption Protocols for Fanout-Optimal Fault-Tolerant Termination Detection ¢ Jonathan Lifflander 3 21/25

Termination Detection
— The RELLAZY and RELEAGER protocols

Adoption Protocols for Fanout-Optimal Fault-Tolerant Termination Detection ¢ Jonathan Lifflander 3 22/25

Termination Detection
— The RELLAZY and RELEAGER protocols

Adoption Protocols for Fanout-Optimal Fault-Tolerant Termination Detection ¢ Jonathan Lifflander 3 22/25

Termination Detection
— The RELLAZY and RELEAGER protocols

Adoption Protocols for Fanout-Optimal Fault-Tolerant Termination Detection ¢ Jonathan Lifflander 3 22/25

Termination Detection
— The RELLAZY and RELEAGER protocols

Adoption Protocols for Fanout-Optimal Fault-Tolerant Termination Detection ¢ Jonathan Lifflander 3 22/25

Termination Detection
— The RELLAZY and RELEAGER protocols

Adoption Protocols for Fanout-Optimal Fault-Tolerant Termination Detection ¢ Jonathan Lifflander 3 22/25

Termination Detection
— The RELLAZY and RELEAGER protocols

Adoption Protocols for Fanout-Optimal Fault-Tolerant Termination Detection ¢ Jonathan Lifflander 3 22/25

Termination Detection
— The RELLAZY and RELEAGER protocols

Adoption Protocols for Fanout-Optimal Fault-Tolerant Termination Detection ¢ Jonathan Lifflander 3 22/25

Termination Detection
— The RELLAZY and RELEAGER protocols

Adoption Protocols for Fanout-Optimal Fault-Tolerant Termination Detection ¢ Jonathan Lifflander 3 22/25

Termination Detection
— The RELLAZY and RELEAGER protocols

Adoption Protocols for Fanout-Optimal Fault-Tolerant Termination Detection ¢ Jonathan Lifflander 3 22/25

Termination Detection
— Probability Model and Survivability

Nodes Failed Fault (%)

1

oNO O WN

9
10
11
15
18
26
86

126

92.30
3.672
0.942
0.753
0.565
0.094
0.094
0.377
0.094
0.188
0.188
0.282
0.094
0.094
0.094
0.094

Protocol Survivability™ (%)
INDEP f =2 99.32
f=38 98.63
=32 97.47
f =512 93.21
REL* 99.50

*Assuming a 1024-node job

Adoption Protocols for Fanout-Optimal Fault-Tolerant Termination Detection ¢

Jonathan Lifflander

¢

23/25

Termination Detection
— Empirical Results

128 Cores ——= 105 T
256 Cores ==~ 104
512 Cores =22 1.03
1024 Cores ——= 1.02
2048 Cores =41 1.01

H

3 —[—LA—{‘I S
e

NO HF TCE

0.99
0.98
0.97
0.96
0.95

i
N
.

B Ratio of execution time without FT compared to using the REL* protocols

B Sample size of 24, using a Student’s t-test, error bars represent standard error at
99% confidence

B Using distributed-memory work stealing — NQueens (NQ), HF (Hartree-Fock), TCE
(Tensor Contraction Expressions)

Adoption Protocols for Fanout-Optimal Fault-Tolerant Termination Detection ¢ Jonathan Lifflander * 24/25

Termination Detected!

git://charm.cs.illinois.edu/terminator.git

Adoption Protocols for Fanout-Optimal Fault-Tolerant Termination Detection ¢ Jonathan Lifflander * 25/25

