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Termination Detection
— What is it?

= The “global” system state when

» all processes are idle and
» no messages are in flight
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A process is any schedulable entity: thread, object, etc.

A process is either active or passive

A process starts passive (except for the root)

A process only becomes active when it receives a message

A process can only send messages in the active state

A process transitions back to passive after processing a message
idle = passive
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® As parallel computations become more dynamic, detecting
termination is non-trivial
» Adaptive mesh refinement*
» Dynamic data exchanges (e.g. SPMV)
» Distributed-memory work stealing — task scheduling?

*Akhil Langer, Jonathan Lifflander, Phil Miller, Kuo-Chuan Pan, Laxmikant V. Kale, Paul Ricker. Scalable Algorithms for
Distributed-Memory Adaptive Mesh Refinement. In Proceedings of the 24th International Symposium on Computer Architecture and
High Performance Computing (SBAC-PAD ’12).

James Dinan, D. Brian Larkins, P. Sadayappan, Sriram Krishnamoorthy, and Jarek Nieplocha. Scalable work stealing. In
Proceedings of the Conference on High Performance Computing Networking, Storage and Analysis (SC '09).
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Termination Detection

— Why is it relevant?

® As parallel computations become more dynamic, detecting
termination is non-trivial

Adaptive mesh refinement*

Dynamic data exchanges (e.g. SPMV)

Distributed-memory work stealing — task scheduling®

Runtimes with message-driven execution®

v vy VvYyYy

*Akhil Langer, Jonathan Lifflander, Phil Miller, Kuo-Chuan Pan, Laxmikant V. Kale, Paul Ricker. Scalable Algorithms for
Distributed-Memory Adaptive Mesh Refinement. In Proceedings of the 24th International Symposium on Computer Architecture and
High Performance Computing (SBAC-PAD ’12).

James Dinan, D. Brian Larkins, P. Sadayappan, Sriram Krishnamoorthy, and Jarek Nieplocha. Scalable work stealing. In
Proceedings of the Conference on High Performance Computing Networking, Storage and Analysis (SC '09).

j'—Jeremiah Willcock, Torsten Hoefler, Nicholas Edmonds, Andrew Lumsdaine. Active pebbles: parallel programming for data-driven
applications. Proceedings of the international conference on Supercomputing. ICS’11.
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Termination Detection
— Algorithms

= Many different variants (with different tradeoffs)
» Parental responsibility?
» Wave-based
» Credit-recovery

§

Edsger W. Dijkstra, C.S. Scholten. Termination detection for diffusing computations. Information Processing Letters. 1980.
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— Algorithm Overview : Parental Responsibility

Adoption Protocols for Fanout-Optimal Fault-Tolerant Termination Detection ¢ Jonathan Lifflander 3 10/25



Termination Detection
— Algorithm Overview : Parental Responsibility

Adoption Protocols for Fanout-Optimal Fault-Tolerant Termination Detection ¢ Jonathan Lifflander 3 10/25



Termination Detection
— Algorithm Overview : Parental Responsibility

Adoption Protocols for Fanout-Optimal Fault-Tolerant Termination Detection ¢ Jonathan Lifflander 3 10/25



Termination Detection
— Algorithm Overview : Parental Responsibility

Adoption Protocols for Fanout-Optimal Fault-Tolerant Termination Detection ¢ Jonathan Lifflander 3 10/25



Termination Detection
— Algorithm Overview : Parental Responsibility

Adoption Protocols for Fanout-Optimal Fault-Tolerant Termination Detection ¢ Jonathan Lifflander 3 10/25



Termination Detection
— Algorithm Overview : Parental Responsibility

Adoption Protocols for Fanout-Optimal Fault-Tolerant Termination Detection ¢ Jonathan Lifflander 3 10/25



Termination Detection
— Algorithm Overview : Parental Responsibility

Adoption Protocols for Fanout-Optimal Fault-Tolerant Termination Detection ¢ Jonathan Lifflander 3 10/25



Termination Detection
— Algorithm Overview : Parental Responsibility

Adoption Protocols for Fanout-Optimal Fault-Tolerant Termination Detection ¢ Jonathan Lifflander 3 10/25



Termination Detection
— Algorithm Overview : Parental Responsibility

Adoption Protocols for Fanout-Optimal Fault-Tolerant Termination Detection ¢ Jonathan Lifflander 3 10/25



Termination Detection
— Algorithm Overview : Parental Responsibility

Adoption Protocols for Fanout-Optimal Fault-Tolerant Termination Detection ¢ Jonathan Lifflander 3 10/25



Termination Detection
— Algorithm Overview : Parental Responsibility

Adoption Protocols for Fanout-Optimal Fault-Tolerant Termination Detection ¢ Jonathan Lifflander 3 10/25



Termination Detection
— Algorithm Overview : Parental Responsibility

Adoption Protocols for Fanout-Optimal Fault-Tolerant Termination Detection ¢ Jonathan Lifflander 3 10/25



Termination Detection
— Algorithm Overview : Parental Responsibility

Adoption Protocols for Fanout-Optimal Fault-Tolerant Termination Detection ¢ Jonathan Lifflander 3 10/25



Termination Detection
— Algorithm Overview : Parental Responsibility

Adoption Protocols for Fanout-Optimal Fault-Tolerant Termination Detection ¢ Jonathan Lifflander 3 10/25



Termination Detection
— Algorithm Overview : Parental Responsibility

Adoption Protocols for Fanout-Optimal Fault-Tolerant Termination Detection ¢ Jonathan Lifflander 3 10/25



git://charm.cs.illinois.edu/terminator.git



git://charm.cs.illinois.edu/terminator.git

General C++ and Java library



git://charm.cs.illinois.edu/terminator.git

Implemented in three parallel runtime systems



git://charm.cs.illinois.edu/terminator.git

Being made fault-tolerant based on this work



Fault-Tolerant Termination Detection

— Problem Description

= Approaches to fault-tolerance
» General runtime-system support: checkpointing, message-logging, etc.
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Fault-Tolerant Termination Detection

— Problem Description

= Approaches to fault-tolerance

» General runtime-system support: checkpointing, message-logging, etc.

» Algorithm-specific (checksum-based approaches for math libraries)

» Component-specific: runtime system is composed of a set of
self-healing components that all handle faults in their own optimized
way — so-called scale invariance¥

YAl Geist and Christian Engelmann. Development of Naturally Fault Tolerant Algorithms
for Computing on 100,000 Processors. 2002.
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Fault-Tolerant Termination Detection

— Component-specific

m Assume ecosystem is fault tolerant

» Application can recover from faults
» Other runtime system components are fault-tolerant
» Termination can be handled as a modular component
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Fault-Tolerant Termination Detection

— Previous work

m Distributed computing
» An (n-1)-resilient algorithm for distributed termination detection.!

HTen—Hwang Lai, Li-Fen Wu. An (n-1)-resilient algorithm for distributed termination
detection. Parallel and Distributed Systems, IEEE Transactions. Vol.6, No.1, pp.63-78, Jan
1995.
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Fault-Tolerant Termination Detection

— Previous work

m Distributed computing

» An (n-1)-resilient algorithm for distributed termination detection.!

» Recovers from up to n-1 faults in the system!

» But not practical for HPC

» Serializes recovery through the root (one process) of the computation

» Requires all processes (even unengaged) to communicate (obviating
many beneficial properties of parental responsibility algorithms)

» Has low overhead on forward execution

HTen—Hwang Lai, Li-Fen Wu. An (n-1)-resilient algorithm for distributed termination
detection. Parallel and Distributed Systems, IEEE Transactions. Vol.6, No.1, pp.63-78, Jan
1995.
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Fault-Tolerant Termination Detection
— Goals for HPC

= | ow overhead during forward execution

= Expect to encounter faults that only impact a small subset of the
processes

= Build a scalable algorithm for recovery
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Termination Detection
— Optimality

® Parental responsibility algorithms
» Message-optimal: in the worst case, they send the lower-bound on

signal count™*
» Where the lower bound is O(m), and m is the total number of

application messages

**K. Mani Chandy and Jayadev Misra. How processes learn. In Proceedings of the forth
annual ACM symposium on Principles of Distributed Computing (PODC ’85).
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Termination Detection
— Optimality

= Fanout-optimality

» The fanoutor f for a given process is the number of communication
partners it has

» Because it follows the communication graph of the application, it will be
as scalable as the application

» For parental-responsibility algorithms, this is a dynamic property

» Optimality: in the worst case, the algorithm sends O( f) signals

» The fault-tolerance algorithms we present are fanout-optimal
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Termination Detection

— Fault-tolerance assumptions

= General
» Fail-stop model: failed processes do not recover
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Termination Detection

— Fault-tolerance assumptions

= General
» Fail-stop model: failed processes do not recover
» External system (or runtime system) provides failure notification
» No byzantine failures: failed processes do not behave maliciously
= Specific
» Network send fence: messages are “on-the-wire”
» Fail-flush: a system notification indicating that in-flight messages from
a failed process have all been received
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Termination Detection
— The INDEP fault-tolerance protocol
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Termination Detection
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Termination Detection
— The INDEP fault-tolerance protocol

m Tolerates all single-process failures
= What multi-process failures does it not tolerate?

» INDEP will tolerate all failures except for parent-child pairs...
» But, INDEP cannot detect this case, so it has to fail conservatively if the
failure set has communicating pairs in it
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Termination Detection
— The INDEP fault-tolerance protocol
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Termination Detection
— The RELLAZY and RELEAGER protocols

Adoption Protocols for Fanout-Optimal Fault-Tolerant Termination Detection ¢ Jonathan Lifflander 3 22/25



Termination Detection
— The RELLAZY and RELEAGER protocols

Adoption Protocols for Fanout-Optimal Fault-Tolerant Termination Detection ¢ Jonathan Lifflander 3 22/25



Termination Detection
— The RELLAZY and RELEAGER protocols

Adoption Protocols for Fanout-Optimal Fault-Tolerant Termination Detection ¢ Jonathan Lifflander 3 22/25



Termination Detection
— The RELLAZY and RELEAGER protocols

Adoption Protocols for Fanout-Optimal Fault-Tolerant Termination Detection ¢ Jonathan Lifflander 3 22/25



Termination Detection
— The RELLAZY and RELEAGER protocols

Adoption Protocols for Fanout-Optimal Fault-Tolerant Termination Detection ¢ Jonathan Lifflander 3 22/25



Termination Detection
— The RELLAZY and RELEAGER protocols

Adoption Protocols for Fanout-Optimal Fault-Tolerant Termination Detection ¢ Jonathan Lifflander 3 22/25



Termination Detection
— The RELLAZY and RELEAGER protocols

Adoption Protocols for Fanout-Optimal Fault-Tolerant Termination Detection ¢ Jonathan Lifflander 3 22/25



Termination Detection
— The RELLAZY and RELEAGER protocols

Adoption Protocols for Fanout-Optimal Fault-Tolerant Termination Detection ¢ Jonathan Lifflander 3 22/25



Termination Detection
— The RELLAZY and RELEAGER protocols

Adoption Protocols for Fanout-Optimal Fault-Tolerant Termination Detection ¢ Jonathan Lifflander 3 22/25



Termination Detection
— Probability Model and Survivability

Nodes Failed Fault (%)

1

oNO O WN

9
10
11
15
18
26
86

126

92.30
3.672
0.942
0.753
0.565
0.094
0.094
0.377
0.094
0.188
0.188
0.282
0.094
0.094
0.094
0.094

Protocol Survivability™ (%)
INDEP f =2 99.32
f=38 98.63
=32 97.47
f =512 93.21
REL* 99.50

*Assuming a 1024-node job
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Termination Detection
— Empirical Results

128 Cores ——= 105 T
256 Cores ==~ 104
512 Cores =22 1.03
1024 Cores ——=  1.02
2048 Cores =41 1.01

H

3 —[—LA—{‘I S
e

NO HF TCE

0.99
0.98
0.97
0.96
0.95

i
N
.

B Ratio of execution time without FT compared to using the REL* protocols

B Sample size of 24, using a Student’s t-test, error bars represent standard error at
99% confidence

B Using distributed-memory work stealing — NQueens (NQ), HF (Hartree-Fock), TCE
(Tensor Contraction Expressions)
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Termination Detected!

git://charm.cs.illinois.edu/terminator.git
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